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COMPUTER ANALYSIS OF FRACTAL SETS

PETR PAUŠ1

Abstract. This article deals with the numerical computation of the Box-counting dimension of
fractal sets. The improvement of this method is presented and successful results are shown.
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1. Introduction. Fractal geometry is one of the relatively new mathematical
disciplines. Unlike classical geometry, it can be used for a better approximation of
objects in the real nature. Fractal geometry deals with highly irregular objects as
well as with smooth objects studied by classical geometry (see [6], [7], and [5]).

Because of its adequate representation of many natural phenomena, fractal ge-
ometry is often used in practical applications, namely in biology, medical science,
and mechanical engineering. Fractal geometry can simulate growth of various living
things starting from simple plants and ending with tumors where it can help curing
patients with cancer. In mechanical engineering, fractal geometry is for example used
for measuring complexity of cracks in material (see [5]).

Complexity, in the sense of fractal geometry, is measured by the fractal dimension.
Unlike the classical dimension, the fractal dimension can be any non-negative real
number and can be estimated in several ways. This article will present the two
most important types of dimensions, i.e. the Hausdorff dimension and Box-counting
dimension. The improvement of the standard numerical computation of Box-counting
will be introduced and the successful result will be shown (see [1]).

2. Hausdorff measure and Hausdorff dimension. The Hausdorff measure
is, in the field of fractal geometry, one of the most useful generalizations of measure.
Using this measure, we can define the Hausdorff dimension, a dimension that can be
used for almost any subset of Rn. Its main disadvantage is that it is not easy to
determine, and it is difficult to be numerically approximated. The Hausdorff measure
(see [1]) is defined as follows:

Let

H̄s
ε(F ) = inf

∑

A∈A
(diam A)s, (2.1)

where the infimum is over all possible ε-covers A of the set F . Then the outer
Hausdorff measure is defined as follows:

H̄s(F ) = lim
ε→∞

H̄s
ε(F ). (2.2)

This measure is 0 or ∞ for almost every value of s. The value of s, where the measure
changes from ∞ to 0, is called the Hausdorff dimension [1]. Therefore:

dimH F = inf{s ≥ 0 : H̄s(F ) = 0} = sup{s ≥ 0 : H̄s(F ) = ∞}. (2.3)
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The Hausdorff dimension measures complexity of a set in such a way that, for ex-
ample, irregular curves in a plane have a dimension higher than 1 but lower than 2
because they are not as complex as a smooth surface. Similarly, irregular surfaces
have dimensions between 2 and 3.

3. Box-counting dimension. The Box-counting dimension is similar to the
Hausdorff dimension, however, its definition considers sets with a fixed diameter. As
a consequence, the numerical approximation is easier. The Box-counting dimension
(see [1]) is defined as follows:

Fig. 3.1: Covering used for numerical estimation of the Box-counting dimension.
Nδ(F ) represents the number of squares containing some points of the set F .

Definition 3.1. Let F ⊂ Rn and Nδ(F ) be the smallest number of sets with
diameter δ which covers the set F . We define the Box-counting dimension as:

dimB F = lim
δ→0

log Nδ(F )
− logδk

. (3.1)

It has been proved (e.g. in [1]) that the Box-counting dimension equals the Hausdorff
dimension for a large class of sets. Furhermore, we can use various types of sets for
covering (see [1]). For example, we can use circles of diameter δ only, squares of side
δ, or squares in the mesh with a step of δ. The last option is used frequently in
numerical approximations of the Box-counting dimension.

4. Numerical approximation of the Box-counting dimension. The Box-
counting dimension can be approximated as follows (see [1], [2], [3]). The set is
covered with a δ-mesh for various values of δ. For each δ, the number of mesh squares
containing some part of the set F is counted. These values can be presented into a
log-log graph, where the y-axis corresponds to log Nδ(F ) and the x-axis corresponds
to −logδ. The regressively obtained value of the slope of this graph approximates the
Box-counting dimension. Since this algorithm is not entirely accurate, we suggest its
modification.

5. Improvement of the Box-counting dimension. One of the main prob-
lems coming with the Box-counting dimension is that the values in the log-log graph
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Fig. 4.1: Assigning weights. Squares with a small number of points of the set F get
lower weight than squares with many points.

do not lie on a line. Therefore, the linear regression has to be used to estimate the
slope. Additionally, a reliable result requires many measurements. We suggest to
improve the approximation of the dimension by assigning weight to every square in a
mesh. The details are described below.

First, the number of points of the set F for every square in a mesh is counted.
We find the maximal value (max) and then we assign weights according to how
many points each square contains. The following two ways of weight assignment yield
reasonable results.

Method I.: Each square with zero points has a weight equal to 0. Squares with
the number of points in the interval [1,max/2] have a weight equal to 1, and all other
squares have the weight equal to 2.

Method II.: Each square with zero points has a weight equal to 0. Squares with
the number of points in the interval [1, max/3] have a weight equal to 1, squares with
the number of points in the interval [max/2,max/3] have a weight equal to 2, and all
other squares have a weight equal to 3.

Consequently, we sum the weights and perform the linear regression to obtain
the estimate of the dimension. By assigning the weights, smoothing of data has been
achieved and accuracy has been improved. The weights also contributed to speeding
up the convergence.

6. Results. The following table shows the results of our computation. The table
presents couples of characteristics - dimension estimate and the computation error.
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We can see that the method 2 gives good results. The algorithm is slightly slower
than the algorithm for the standard Box-counting dimension, but still the time of
computation does not exceed few seconds on a standard PC.
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Fig. 6.1: Example of log-log graph for the Sierpiński carpet. We can see that the
graph for the Method II. is very close to a line.

Set Normal Method I. Method II. real
line 0.9636; 3.63% 0.9874; 1.25% 0.9934; 0.66% 1

square 1.9746; 1.27% 1.9717; 1.41% 1.9966; 0.17% 2
Circle 1.0411; 4.12% 0.9856; 1.43% 0.9951; 0.48% 1

Sierp. triangle 1.6093; 1.53% 1.5985; 0.85% 1.6021; 1.08% log 3/ log 2
Sierp. carpet 1.8631; 1.57% 1.8718; 1.11% 1.8839; 0.47% log 8/ log 3
Koch curve 1.2866; 1.96% 1.2771; 1.21 % 1.2756; 1.09% log 4/ log 3

Cantor discont. 1.0085; 0.85% 0.9958; 0.42% 0.9996; 0.04% 1
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Fig. 6.2: Koch Snowflake. The Hausdorff dimension is equal to log 4/ log 3. Numerical
estimation (Method II.) gives the value of 1.2756 with error of 1.09%.
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Fig. 6.3: Cantor Discontinuum. The Hausdorff dimension is equal to 1. Numerical
estimation (Method II.) gives the value of 0.9996 with error of 0.04%.
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