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Motivation

Two-phase flow in porous media
Immiscible
Incompressible

Capillarity
Capillary barrier in
heterogeneous porous media
Dynamic effect Figure: Laboratory experiment

provided by CESEP, Colorado School
of Mines
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Single phase flow
Darcy law

u = − 1

µ
K (∇p− ρg) = − 1

µ
K∇ψ

Continuity theorem

(incompressible and immiscible)

Φ
∂%

∂t
+∇ · (% u) = %F Figure: H. Darcy

[1803-1858]

α ∈ {w, n}
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Two-phase flow
Darcy law

uα = −krα
µα

K (∇pα − ραg) = −λαK∇ψα

Continuity theorem
(incompressible and immiscible)

Φ
∂Sα
∂t

+∇ · uα = Fα
Figure: H. Darcy
[1803-1858]

α ∈ {w, n}
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Problem Formulation
1D two-phase flow equation

Φ
∂Sw
∂t

+
AR√
t

∂fw(Sw)

∂x
− ∂

∂x

(
D(Sw)

∂Sw
∂x

)
= 0

0
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(a) Homogeneous setup
McWhorter and Sunada (1992)
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(b) Heterogeneous setup
Fuč́ık et al. (2008)
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Exact Solution
1D two-phase flow equation

Φ
∂Sw
∂t

+
AR√
t

∂fw(Sw)

∂x
− ∂

∂x

(
D(Sw)

∂Sw
∂x

)
= 0

Exact solution Sw = Sw(t, x) is implicitly obtained from

x = F ′(Sw)
2A(1−Rfw(Si))

Φ

√
t

Function F = F (Sw) satisfies the integral equation

F (Sw) = 1−

S0∫
S

(v−Sw) D(v)
F (v)−ϕ(v) dv

S0∫
Si

(v−Si) D(v)
F (v)−ϕ(v) dv
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Modified Integral Equation

Substitution G ≡ D
F−ϕ allows to obtain modified integral equations :

variant A :

Gk+1(Sw) = D(Sw) +Gk(Sw)

ϕ(Sw) +

S0∫
S

(v − Se) Gk(v) dv

S0∫
Si

(v − Si) Gk(v) dv


variant B :

Gk+1(Sw) = (D(Sw) +Gk(Sw) ϕ(Sw))

1−

S0∫
Se

(v − S) Gk(v) dv

S0∫
Si

(v − Si) Gk(v) dv


−1
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Exact Solution for Layered Porous Media

0
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(a) Homogeneous setup
McWhorter and Sunada (1992)
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Sw
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ut
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(b) Heterogeneous setup
Fuč́ık et al. (2008)

Combination of two exact solutions for the homogeneous problems
Interfacial conditions:

AIRI = AIIRII

RI −RIRII +RII = 0
pIc(S

I
0 ) = pIIc (SII0 )
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Example Solutions

Homogeneous medium
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Dynamic Effect in Capillarity
Gray and Hassanizadeh [1991]

pc =< pn > − < pw > holds only in thermodynamic equilibrium
< pα > . . . averaged microscopic phase pressure

Dynamic effect in pc–Sw relationship

pc(Sw) = peqc (Sw)− τ(Sw)
∂Sw
∂t

Dynamic effect coefficient τ = τ(Sw) (exp. data from CESEP)
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Two-phase flow incl. dynamic effect
Darcy law

uα = −krα
µα

K (∇pα − ραg) = −λαK∇ψα

Continuity theorem
(incompressible and immiscible)

Φ
∂Sα
∂t

+∇ · uα = Fα

Capillary pressure

pc = pn − pw = peqc − τ(Sw)
∂Sw
∂t

Saturation
Sw + Sn = 1

Figure: H. Darcy
[1803-1858]

α ∈ {w, n}
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Dynamic Effect in Capillarity
How does the inclusion of dynamic effect in capillarity influence
results of numerical models?

Tools used:
Vertex–Centered Finite Volume Method (VCFVM) in 1D

Fully implicit in time

Data from laboratory experiment (CESEP)

Results:

Verification of VCFVM using semi-analytical solutions
Simulation of the laboratory experiment

Dynamic effect in capillarity not found to be important in homogeneous
medium

Barrier effect sensitivity analysis (heterogeneous medium)

Dynamic effect in capillarity influenced the speed of propagation of
non-wetting phase through material interfaces
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Simulation of Laboratory Experiment
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Figure: Simulation of the laboratory experiment in homogeneous medium.
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MHFE-DG Problem Formulation
Model equations (without dynamic effect, ψc = ψc(Sw))

Φ
∂Sα
∂t

+∇ · uα = Fα (1)

uα = −λαK∇ψα (2)
ψc = ψn − ψw (3)

Sw + Sn = 1 (4)

Total velocity ut splitting

ut = uw +un = −λwK∇ψw−λnK∇ψn = −λtK∇ψw︸ ︷︷ ︸
ua

+fn(−λtK∇ψc︸ ︷︷ ︸
uc

)

Eq. (1):

Φ
∂Sα
∂t

+∇ · (fwua) = Fα
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Key Steps of MHFE-DG Discretization

Approximation of uc and ua in the Raviart–Thomas space RT0(K)
space (MHFE)

uα =
∑
E∈EK

uα,K,EwK,E(x), α ∈ {c, a}

Expression of uc and ua as a function of side-average potentials ψc,E
and ψw,E

Satisfying the extended capillary pressure condition at material
interfaces

Approximation of Sw in the discontinuous Galerkin space D1(K) (DG)

Sw(t,x) =
∑
E∈EK

Sw,K,E(t)ϕK,E(x)
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Computational Algorithm (IMPES)

Siw,K,E

→ ψc,E → uc,K,E → ψw,E → ua,K,E → Ŝi+1
w,K,E → Si+1

w,K,E

Implicit system of equations for side-average potentials ψc,E based on
known saturation Sw,K,E from previous time step i

Computation of velocities uc,K,E

Implicit system of equations for side-average potentials ψw,E based on
known velocities uc,K,E

Computation of velocities ua,K,E

Discretization of the saturation equation based on known velocities
ua,K,E leads to a system of ODE for Sw,K,E = Sw,K,E(t)

Explicit solution of the system of ODE using Forward Euler method

Slope limiting procedure to stabilize the numerical method
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ua,K,E leads to a system of ODE for Sw,K,E = Sw,K,E(t)

Explicit solution of the system of ODE using Forward Euler method

Slope limiting procedure to stabilize the numerical method

20 / 28
Advanced Numerical Methods for Modelling Two-Phase Flow in Heterogeneous Porous Media



Introduction Benchmark Solutions Dynamic Effect MHFE-DG Method Conclusion Publications

Computational Algorithm (IMPES)

Siw,K,E → ψc,E → uc,K,E → ψw,E → ua,K,E → Ŝi+1
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Results: LNAPL at Inclined Interface
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Mesh: 32374 triangles
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Results: LNAPL at Inclined Interface

Time t=27 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: LNAPL at Inclined Interface

Time t=42 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: LNAPL at Inclined Interface

Time t=1 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: LNAPL at Inclined Interface

Time t=1 h 15 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: LNAPL at Inclined Interface

Time t=1 h 30 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: LNAPL at Inclined Interface

Time t=2 h 10 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: LNAPL at Inclined Interface

Time t=3 h 32 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: LNAPL at Inclined Interface

Time t=3 h 50 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: LNAPL at Inclined Interface

Time t=3 h 52 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).

22 / 28
Advanced Numerical Methods for Modelling Two-Phase Flow in Heterogeneous Porous Media



Introduction Benchmark Solutions Dynamic Effect MHFE-DG Method Conclusion Publications

Results: Random Heterogeneous Medium
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Results: Random Heterogeneous Medium

Time t=10 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).

24 / 28
Advanced Numerical Methods for Modelling Two-Phase Flow in Heterogeneous Porous Media



Introduction Benchmark Solutions Dynamic Effect MHFE-DG Method Conclusion Publications

Results: Random Heterogeneous Medium

Time t= 20 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 30 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 40 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 50 min

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 1 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 1.2 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 1.7 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 2.4 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 2.6 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 2.7 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 3.6 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 3.7 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Results: Random Heterogeneous Medium

Time t= 4.6 h

Figure: MHFE-DG simulation vs. laboratory experiment (CESEP).
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Outline

1 Two-phase flow in porous media

2 Semi-analytical solutions in 1D

3 Dynamic effect in capillary pressure–saturation
relationship

4 Mixed-Hybrid Finite Element – Discontinuous Galerkin
method

5 Conclusion
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Conclusion: Key Results
1 McWhorter and Sunada semi-analytical solution

New, more robust iterative method for solving integral equation
Extension to heterogeneous porous media

2 Dynamic effect in capillary pressure–saturation relationship
Fully implicit VCFVM method in 1D
Numerical scheme verification using 1D benchmark problems
Simulation of laboratory experiment using laboratory measured data
(CESEP)
Dynamic effect found to be important in heterogeneous porous materials

3 Mixed-hybrid finite element and discontinuous Galerkin method
Improvements to the MHFE-DG method by Hoteit and Firoozabadi [2008]
Inclusion of the extended capillary pressure condition
Numerical scheme verification using 1D and 2D benchmark problems
Good agreement with laboratory experiments (CESEP)

4 Future work
More realistic computational time: parallel implementation of the CG solver
on nVidia graphics cards using CUDA (original research in progress within
our group MMG)
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Publications

Book Chapter:

T. H. Illangasekare, C. C. Frippiat, R. Fučík
Dispersion and Mass Transfer Coefficients in
Groundwater of Near-surface Geologic Formations
in Handbook of Estimation Methods: Environmental
Mass Transport Coefficients, Dispersion and Mass
Transfer Coefficients
Editors L. J. Thibodeaux and D. Mackay,
CRC Press / Taylor and Francis Group, UK, 2010

Impacted Periodicals: 5 (next page)
Contributions in Proceedings: 10 + 1 submitted
International conference presentations: 7 talks, 9 posters
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Vadose Zone Journal, vol. 9, pages 697–708, 2010

Beneš M., Fučík R., Mikyška J., and Illangasekare T.H.
Analytical and Numerical Solution for One-Dimensional Two-Phase Flow in Homogeneous
Porous Medium
Journal of Porous Media, vol. 12, no. 12, pages 1139–1152, 2009

R.Fučík , I. Cheddadi, M. Prieto and M. Vohralík
Guaranteed and robust a posteriori error estimates for singularly perturbed
reaction-diffusion problems
ESAIM: Mathematical Modelling and Numerical Analysis, no. 43, pages 867–888, 2009

R.Fučík, J. Mikyška, T. H. Illangasekare and M. Beneš
Semi-Analytical Solution for Two-Phase flow in Porous Media with a Discontinuity
Vadose Zone Journal, vol. 7 no. 3, pages 1001–1009, 2008
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An Improved Semi-Analytical Solution for Verification of Numerical Models of Two-Phase
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