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Abstract

A modern numerical scheme for simulation of flow of two immiscible and incompressible phases in inhomoge-

neous porous media is proposed. The method is based on a combination of the mixed-hybrid finite element (MHFE)

and discontinuous Galerkin (DG) methods. The combined approach allows for accurate approximation of the flux

at the boundary between neighboring finite elements, especially in heterogeneous media. In order to simulate the

non-wetting phase pooling at material interfaces (i.e., the barrier effect), we extend the approach proposed in Hoteit

and Firoozabadi (2008) by considering the extended capillary pressure condition. The applicability of the MHFE-

DG method is demonstrated on benchmark solutions and simulations of laboratory experiments of two-phase flow in

highly heterogeneous porous media.

Keywords: Two-phase flow in porous medium, Capillary barrier, Heterogeneous porous medium, Mixed-hybrid

finite element method, Discontinuous Galerkin method

1. Introduction

Understanding and protection of drinking water resources is one of the most important modern missions of the

mathematical modeling of flow in the subsurface. Due to industrial activities, the water saturated aquifers are en-

dangered by substances with a very low solubility in water such as oil or chlorinated hydrocarbons. When these

substances, generally referred to as Non-Aqueous Phase Liquids (NAPLs), enter the aquifer, they can serve as a long-

time source of groundwater contamination. A prediction of their behavior in the subsurface is an important step

towards their partial or complete removal from the contaminated area. Therefore, two-phase processes have been

studied intensively in engineering, soil physics, and hydrogeology over several decades [1], [2]. The propagation of

NAPLs through water saturated zones is usually driven by two primary mechanisms. The NAPL is displaced due

to external forces (externally imposed flow, gravity) and capillarity. Especially in heterogeneous porous media, the

capillary forces have an important impact on the flow across interfaces between materials with different capillarity

properties, [3]. Besides the groundwater protection, two-phase flow models play an important role in the petroleum

reservoir engineering and deep CO2 sequestration [4].
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In order to model two-phase flow in heterogeneous porous materials, a large number of numerical methods has

been developed based on the finite difference (FD), finite volume (FV), or finite element (FE) methods. These methods

have typically low accuracy. The FD method is applicable only for orthogonal meshes and the conventional FV

method is strongly influenced by the mesh quality and orientation, which makes these methods unsuitable for a large

number of real world problems modeled using unstructured grids. There have been attempts to improve accuracy

of the FV approach on unstructured meshes by using multi-point flux approximation techniques. Another effort to

develop a higher–order numerical scheme was based on the mixed-hybrid finite element (MHFE) method such as [5].

However, none of the proposed MHFE formulations were able to simulate two-phase flow in heterogeneous porous

media with discontinuities in saturations at material interfaces that are caused by different capillary pressure functions.

Recently, Hoteit and Firoozabadi [6], [7], [8], developed a higher–order numerical method that combines the MHFE

approach and the discontinuous Galerkin (DG) method, together denoted as MHFE-DG. Their approach can be used

to model two–phase flow in a heterogeneous porous medium with sharp jumps in saturation across material interfaces.

We build upon their ideas and extend their approach so that the scheme can simulate the non-wetting phase pooling at

material heterogeneity. The use of MHFE-DG allows for accurate representation of the phase velocities across sides

of finite elements and approximates saturation as piecewise discontinuous per elements. This facilitates discretization

of the two-phase flow problems especially in case of heterogeneous porous materials and fractured media, where the

saturation is often discontinuous across sharp heterogeneity interfaces.

The paper is organized in the following way. In Section 2, we review the two-phase flow equations and ex-

tended capillary pressure condition at heterogeneity interfaces. In Section 3, we reformulate the problem using the

flow potentials and specially introduced velocities. In Section 4, we describe derivation of the numerical scheme,

resulting system of linear equations, and the computational algorithm. In Section 5, we use benchmark solutions

to verify convergence of the numerical scheme in both homogeneous and heterogeneous cases. In Section 6, we

present application of the MHFE-DG scheme for simulation of a laboratory experiment of two–phase flow in a highly

heterogeneous porous medium.

2. Model Equations

The mathematical model of multi-phase flow in porous media is based on the assumption that every fluid phase

is governed by the continuity theorem and the Darcy law. In the following, we consider a wetting phase and a non-

wetting phase indexed by w and n, respectively. The α-phase mass balance for α ∈ {w, n} has the following form

∂(φ�αS α)
∂t

+ ∇·(�α uα) = �αFα, (1)

and the Darcy law for the phase α reads as

uα = −kr,α

μα
K(∇pα − �α g) = −λαK(∇pα − �α g), (2)

where φ [−] is the porosity of the medium, K [m2] is the intrinsic permeability tensor, and g [m s−2] is the gravitational

acceleration vector. For α ∈ {w, n}, the symbols �α, S α, uα, Fα, μα, kr,α, and pα stand for the α-phase density [kg m−3],

saturation [−], apparent macroscopic velocity [m s−1], specific source/sink term [s−1], dynamic viscosity [kg m−1 s−1],

relative permeability [−], and pressure [kg m−1 s−2], respectively. The term kr,α/μα is frequently denoted as the α-

phase mobility λα. By definition, S w + S n = 1. We use the Burdine model for the relative permeability functions

kr,w(S w,e) = S
3+ 2
λ

w,e , kr,n(S w,e) = (1 − S w,e)2(1 − S
1+ 2
λ

w,e ), (3)

where the parameter λ [−] is determined experimentally and S w,e is the effective wetting-phase saturation defined as

S w,e = (S w − S wr)/(1 − S wr), where S wr is the irreducible wetting-phase saturation.

The effects of capillarity are modeled by the capillary pressure pc = pn − pw which is considered to be a function

of saturation S w. A commonly acknowledged model for drainage processes for pc = pc(S w) is the Brooks and Corey

model

pc(S w,e) = pdS
− 1
λ

w,e for S w,e ∈ (0, 1], (4)
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where λ is the same parameter as in (3) and pd [Pa] is the entry pressure. The entry pressure pd is the capillary

pressure at full saturation and it is the minimal capillary pressure required to displace the wetting phase from the

largest occurring pore. It plays an important role in the flow of non-wetting phases through material interfaces. Let

us consider an initially fully water saturated column with two sands separated by a sharp interface. Since no mass is

lost or produced at the material interface, the mass conservation law states that the normal component of the mass flux
�α uα · n is continuous across the interface, where n denotes a unit normal to the interface (see Figure 1). Assuming

that a mobile wetting phase is present on both sides of the interface, it follows that pw is also continuous across the

interface (c.f. [9]). Moreover, if a non-wetting phase is present on both sides of the interface, pn is also assumed to be

continuous which implies the continuity of the capillary pressure pc in that case. On the other hand, if the non-wetting

phase is not present but approaches the material interface from the coarse sand side (denoted by the superscript I),

the interfacial capillary pressure pI
c increases. When pI

c is lower than pII
d of the finer medium, the non-wetting phase

cannot penetrate the interface and accumulates there. In this case both pc and pn are discontinuous. This is referred

to as the barrier effect [9]. Once the capillary pressure pI
c exceeds the entry pressure threshold pII

d , the non-wetting

phase enters the finer medium and the capillary pressure pc is continuous, i.e., pI
c = pII

c , while the saturation can be

still discontinuous. In Figure 2, typical Brooks and Corey capillary pressure curves (4) for two different porous media

are shown. Altogether, the condition at the material interface is established in the following form:

S II
n = 0 and pII

c = pII
d , if pI

c < pII
d ,

pI
c = pII

c , otherwise.
(5)

n

Domain Ω

material
interface

Subdomain ΩI :

KI ΦI

kIr,w kIr,n pIc

Subdomain ΩII :

KII ΦII

kIIr,w kIIr,n pIIc

Figure 1: The sharp interface between two different porous media.
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Figure 2: Typical Brooks and Corey pc curves for two different sands.

Eq. (5) is referred to as the extended capillary pressure condition [9]. A unique value of the wetting phase

saturation S I,∗
w can be associated with the threshold value of the capillary pressure such that S I,∗

w = (pI
c)−1(pII

d ), see

Figure 2. The threshold saturation S I,∗
w indicates whether the non-wetting phase can penetrate the material interface

(S I
w ≤ S I,∗

w ) or the barrier effect is simulated (S I
w > S I,∗

w ).

3. Problem Formulation

We assume that both fluids are incompressible, we introduce the flow potential ψα as ψα = pα − �α g ·x, where

x is the position vector and α ∈ {w, n}. Similarly to the definition of the capillary pressure, we define the capillary
potential as

ψc = ψn − ψw = pc − (ρn − ρw)g·x. (6)

Consequently, the system of equations can be rewritten in the following form

φ
∂S α
∂t
+ ∇·uα = Fα, (7a)

uα = −λαK∇ψα, (7b)

ψc = ψn − ψw, (7c)

S w + S n = 1, (7d)
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where α ∈ {w, n} and the unknown functions are the saturations S α = S α(t, x) and the phase potentials ψα = ψα(t, x)

for all t > 0 and x inside a domain Ω ⊂ R
d, d = 1, 2, 3. Equations (7) are subject to an initial condition

S α = S ini
α , in Ω, (8)

and boundary conditions

uα · n = uNα on Γuα ⊂ ∂Ω, (9a)

S w = SDw on ΓS w ⊂ ∂Ω, (9b)

ψα = ψ
D
α on Γψα ⊂ ∂Ω, (9c)

where Γuα , ΓS w , and Γψα denote the subsets of the domain boundary ∂Ω where the boundary conditions for uα, S w, and

ψα are prescribed, respectively, α ∈ {w, n}. The initial condition (8) and boundary conditions (9) should be consistent

with (7c) and (7d).

Summing (7a) over α = {w, n} and using (7d), we obtain the following equation for the divergence of the total
velocity ut = uw + un,

∇·ut = ∇·(uw + un) = Fw + Fn in Ω. (10)

We define new velocities ua and uc

ua = −λtK∇ψw, uc = −λtK∇ψc, (11)

where the velocity ua has the same driving force as the velocity uw but with a smoother total mobility λt = λw + λn

and the velocity uc includes the capillary driving forces. Hence, the total velocity ut reads as ut = ua + fnuc, where

fn = λn/λt is the fractional flow function of the non-wetting phase. Note that definition (11) is different from the

definition of uHF
c = −λnK∇ψc, in [8]. In (11) the term λtK is invertible unlike the term λnK in uHF

c which may

degenerate.

Consequently, the phase velocities uw and un, can be expressed in terms of ua and uc as

uw = fwua, un = fnua + fnuc, (12)

where fw = λw/λt is the fractional flow function of the wetting phase. The evolution equation for the wetting phase

saturation (7a) in terms of ua reads as

φ
∂S w

∂t
+ ∇·( fwua) = Fw. (13)

4. Discretization

We consider a spatial discretizationKh of the polygonal domainΩ consisting of elements K, where K are segments

in R or triangles in R
2 and h > 0 is the mesh size defined as the maximum element diameter. We assume that the

mesh is regular and conforming. We denote byVh the set of all vertices V ofKh , by Eh the set of all sides ofKh, and

by Eint
h and Eext

h the set of interior and exterior sides of Kh, respectively. By EK , we denote the set of all sides of an

element K ∈ Kh.

4.1. Velocity Approximation

We assume, that the velocities uα, where α ∈ {w, n}, belong to the functional space H(div,Ω). On each element

K ∈ Kh, we shall approximate the phase velocities uα in the lowest order Raviart–Thomas space RT0(K) ⊂ H(div,K).

The basis functions wK,E ∈ RT0(K) are chosen such that ∀E, F ∈ EK

wK,E ·nK,F = δEF
1

|E|d-1

, ∇·wK,E =
1

|K|d , (14)
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where nK,E is the outward unit normal to side E ∈ EK with respect to element K, d denotes the space dimension, δEF

is the Kronecker symbol, and | · |d is a d-dimensional Lebesque measure. For convenience, we set |E|0 = 1 for all

E ∈ EK . Assuming that the velocity uα is approximated in the basis of RT0(K) as

uα =
∑

E∈EK

uα,K,EwK,E , α ∈ {a, c}, (15)

where uα,K,E are the side–flux variables across the side E ∈ EK in the outward direction with respect to K.

By inverting the permeability tensor K and the total mobility λt in (11), we obtain

λ−1
t K−1ua = −∇ψw, (16)

where K is positive definite tensor and λt is strictly positive. The variational formulation is obtained by multiplying

(16) by the test functions from RT0(Kh) that are represented on each element K ∈ Kh by the RT0(K) basis functions

wK,E . We integrate the resulting product by parts over K and using the properties of the RT0(K) basis functions (14)

we obtain from the left–hand–side of (16):

∫
K

λ−1
t wK,EK−1ua = λ

−1
t,K

∑
F∈EK

ua,K,F AK,E,F , where AK,E,F =

∫
K

wK,EK−1wK,F , (17)

and from the right–hand–side of (16):

−
∫
K

∇ψw ·wK,E = −
∫
∂K

ψwwK,E ·n∂K +
∫
K

ψw∇·wK,E =
1

|K|d
∫
K

ψw − 1

|E|d-1

∫
E

ψw = ψw,K − ψw,E , (18)

where λt,K is the average of λt over K and by ψw,K and ψw,F we denote the cell- and side-averages of the potential

ψw, respectively. The coefficients {AK,E,F}E,F∈EK in (17) form a symmetric and positive definite matrix AK on K [8].

Therefore, AK is invertible and by aK = {aK,E,F}E,F∈EK , we denote its inversion. The coefficients aK,E,F depend only

on the mesh Kh and the value of the intrinsic permeability tensor K. Using this notation, the side–fluxes ua,K,E satisfy

ua,K,E = λt,K

⎛⎜⎜⎜⎜⎜⎜⎝aK,Eψw,K −
∑

F∈EK

aK,E,Fψw,F

⎞⎟⎟⎟⎟⎟⎟⎠ , (19)

where aK,E =
∑

F∈EK
aK,E,F . In (19) we assume that the side-average potentials ψw,E are continuous across the internal

sides, i.e., ψw,K1,E = ψw,K2,E = ψw,E , for all neighboring elements K1 and K2 of E ∈ Eint
h . Additionally, we drop out the

element index K from the side–average potential ψw,K,E = ψw,E also for all external (boundary) sides E ∈ Eext
h .

Similarly, by virtue of the definition of uc in (11), the expression of uc in RT0(K) reads as

uc,K,E = λt,K

⎛⎜⎜⎜⎜⎜⎜⎝aK,Eψc,K −
∑

F∈EK

aK,E,Fψc,K,F

⎞⎟⎟⎟⎟⎟⎟⎠ , (20)

where ψc,K,F denotes the potential ψc averaged over side F with respect to element K for all F ∈ EK . Due to the

extended capillary pressure condition at a material interface placed at side E ∈ Eint
h , the side-average capillary po-

tential ψc,E can be discontinuous when the barrier effect is simulated. This situation requires careful treatment and

is described in the following section. We drop out the element index K from the side-average potential ψc,K,E = ψc,E

also for all external (boundary) sides E ∈ Eext
h .

4.2. System of Equations for Capillary Potentials

Let us consider two neighboring elements K1 and K2. Assuming that no mass is produced or lost on an internal

side E ∈ EK1
∩ EK2

, we consider the following balance of the normal components of ua and uc across E (c.f. [8]):

uα,K1,E + uα,K2,E = 0, α ∈ {a, c}. (21)
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In order to establish a system of linear equations in terms of the side-average potentials ψc,K,E for all E ∈ Eint
h ,

E ∈ EK1
∩ EK2

, we combine (20) with (21):

λt,K1
aK1,Eψc,K1

− λt,K1

∑
F∈EK1

aK1,E,Fψc,K1,F + λt,K2
aK2,Eψc,K2

− λt,K2

∑
F∈EK2

aK2,E,Fψc,K2,F = 0. (22)

If the capillary potential is continuous across side F ∈ EK1
∩ EK2

, the side-average potentials ψc,K1,F and ψc,K2,F

coincide and we denote their common value as ψc,F . In case of the barrier effect at side F, the capillary potential is

discontinuous across F and by ψc,F we denote the side–average capillary pressure potential that corresponds to the

element with lower entry pressure. Altogether, the following side-average potentials ψc,K1,E and ψc,K2,E are used in the

expression for the side-velocities in (22):

ψc,K1,E =

⎧⎪⎪⎨⎪⎪⎩
pd,K1

− (ρn − ρw)
∫
E

g·x dx, if pc,K2,E < pd,K1
,

ψc,E , otherwise,
(23a)

ψc,K2,E =

⎧⎪⎪⎨⎪⎪⎩
pd,K2

− (ρn − ρw)
∫
E

g·x dx, if pc,K1,E < pd,K2
,

ψc,E , otherwise.
(23b)

In (22), the cell–average capillary potential ψc,K can be directly computed using (6) for a given cell–average value of

the saturation S w,K .

Together with the boundary conditions used to close the system of equations (23) for the unknown side-average

potentials ψc,K,E , we obtain a system of linear equations that can be written in a matrix form as

McΨc = bc, (24)

where the square, sparse, symmetric, and positive definite matrix Mc and the vectors Ψc and bc have dimensions #Eh,

where #Eh denotes the total number of sides in Eh. The components of the vector Ψc are the side average potentials

ψc,E for all E ∈ Eh.

4.3. System of Equations for Wetting-Phase Potentials
In order to express ua,K,E given by (19) in terms of the side–average variables ψw,E and ψc,E , we derive an explicit

formula for the cell-average of the wetting phase potential ψw,K . We integrate the volumetric balance equation (10)

for the total velocity ut over K ∈ Kh and use the divergence theorem and the expressions of ua and uc in RT0(K) to

obtain ∑
F∈∂K

∫
F

(ua + fnuc)·nK,F =
∑

E∈EK

ua,K,E +
∑

E∈EK

f upw
n,E uc,K,E = FK , (25)

where FK is the integrated right–hand–side of (10) over K and f upw
n,E is the side–average value of fn taken in the

upstream direction with respect to uc,K,E . Replacing the side fluxes ua,K,E in (25) by (19), we obtain

ψw,K =
FK

λt,K aK
+
∑

E∈EK

aK,E

aK
ψw,E −

∑
E∈EK

f upw
n,E

λt,K aK
uc,K,E , (26)

where aK =
∑

E∈EK
aK,E . Equation (26) allows to express the side fluxes ua,K,E given by (19) in terms of the unknown

ψw,F only

ua,K,E =
aK,E

aK

⎛⎜⎜⎜⎜⎜⎜⎝FK −
∑

F∈EK

f upw
n,F uc,K,F

⎞⎟⎟⎟⎟⎟⎟⎠ + λt,K

∑
F∈EK

(
aK,EaK,F

aK
− aK,E,F

)
ψw,F . (27)

We use (27) in order to express (21) in terms of the side-average potentials ψw,F and together with the boundary

conditions, we obtain a system of linear equations for the unknowns ψw,F that can be written in the matrix form as

MaΨw = ba, (28)

where the square matrix Ma and the vectors Ψw and ba have dimensions #Eh. Similar to the matrix Mc, the matrix

Ma is sparse, symmetric, and positive definite.
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4.4. Saturation Approximation

We discretize the saturation equation (13) using the discontinuous Galerkin (DG) method which is locally con-

servative and flexible for complex unstructured geometries. The DG method approximates the weak solution S w(t, x)

of (13) in a functional space D1(Kh) of discontinuous functions that are piecewise linear on K ∈ Kh. By ϕK,E , we

denote the piecewise linear basis functions of D1(Kh) associated with the edges for all K ∈ Kh and E ∈ EK . We

choose ϕK,E such that 1/|E|d-1

∫
E ϕK,F = δEF for all K ∈ Kh, E, F ∈ EK , and d = 1, 2. In order to obtain the variational

formulation of the continuity equation on each element K, we multiply (13) by the basis functions ϕK,E ∈ D1(Kh),

E ∈ EK , integrate over K, and using the Green theorem:

∫
K

φ
∂S w

∂t
ϕK,E +

∫
∂K

fwϕK,Eua ·n∂K −
∫
K

fwua ·∇ϕK,E =

∫
K

FwϕK,E . (29)

We express the approximated solution as

S w(t, x) ≈
∑

K∈Kh

∑
E∈EK

S w,K,E(t)ϕK,E(x), (30)

for all x ∈ Ω and t ∈ (0,T ), where the basis coefficients S w,K,E are time-dependent. Using the expression of ua in the

basis of RT0(K) in (15), we approximate (29) as

φK

∑
F∈EK

dS w,K,F

dt

∫
K

ϕK,E ϕK,F +
∑

H,F∈EK

f upw
w,F

ua,K,G

|H|d-1

∫
H

ϕK,FϕK,E − fw,K
∑

G∈EK

ua,K,G

(
δEG − 1

d + 1

)
=

∫
K

Fw ϕK,E , (31)

where fw,K is the cell-average of fw, f upw
w,F is the side-average of fw taken in the upstream direction with respect to ua,K,F .

We use the explicit forward Euler method to solve the system of ODEs (31) where the initial condition is given by the

initial condition for the saturation (8). Due to the higher–order approximation of the saturation in the discontinuous

Galerkin method, the numerical scheme produces non-physical oscillations near shocks, [10], [8]. These spurious

oscillations can be avoided by reconstructing the approximated discontinuous Galerkin solution using a slope limiter

procedure. To stabilize the MHFE-DG numerical scheme, we use the slope limiter introduced by Chavent and Jaffré,

[11], in the form described in [10].

4.5. Computational Algorithm

We summarize the complete computational algorithm for obtaining the numerical solution of the two-phase flow

system (7) using the MHFE-DG method. The computation proceeds in the following order:

1. Compute the mesh-dependent coefficients aK,E,F , aK,E , and aK for all K ∈ Kh and E, F ∈ EK .

2. Set i = 0, t = t0, and choose an initial time step Δt0. Use (8) to initialize S 0
w,K,E = S ini

w,K,E .

3. Repeat the following steps until the predetermined final time T of the simulation is reached.

(a) Based on a given saturations S i
w,K,E from previous time ti, compute the cell-average capillary potentials

ψc,K for all K ∈ Kh using (6).

(b) Assemble Mc and bc, solve (24), and compute uc,K,E for all K ∈ Kh and E ∈ EK using (20).

(c) Assemble Ma and ba, solve (28), and compute ua,K,E for all K ∈ Kh and E ∈ EK using (27).

(d) Use the forward Euler method to obtain S i+1
w,K,E from (31).

(e) Apply the slope limiting procedure in the form described in [10].

(f) Set ti+1 = ti + Δti and set i := i + 1.

5. Numerical Experiments

The correctness and accuracy of the MHFE-DG numerical scheme is verified by means of the semi-analytical

solutions that can be obtained if several assumptions are placed upon the problem formulation (7). These benchmark

solutions can be derived for a one-dimensional two-phase flow problem without sources or sinks (Fw = Fn = 0) and
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Homogeneous Case Heterogeneous Case

h1 → h2 [cm] eoc1 eoc2 eoc1 eoc2

1→ 1/2 0.91 0.75 0.87 0.62
1/2→ 1/4 0.92 0.89 0.93 0.72
1/4→ 1/8 0.83 1.041 0.91 0.63
1/8→ 1/16 0.53 1.32 0.92 0.63

Table 1: Experimental orders of convergence eoc1 and eoc2 computed for the benchmark problems in homogeneous (left column) and heteroge-

neous (right column) porous medium in L1 and L2 norms, respectively.
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Figure 3: Numerical solution of the McWhorter and Sunada problem in a homogeneous (a) and heterogeneous (b) porous medium.

with zero gravity (g = 0) for homogeneous and heterogeneous cases, see [12], [13], and [14]. In both benchmark prob-

lems we assume that the air (μa = 1.8205·10−5kg m−1s−1 and ρa = 1.2 kg m−1‘) displaces water (μw = 0.001 kg m−1s−1

and ρw = 1000 kg m−3) from a one-dimensional domain.

In homogeneous case, we test the numerical scheme by means of the McWhorter and Sunada [15] exact solution

in a one-dimensional domain Ω = [0, 1] with the following choice of the parameters: R = 0.92, S 0 = 0.5, S i = 1, and

A = 1.53 · 10−3 ms−
1
2 (for the definition of these parameters, we refer to [13]). The properties of the porous medium

are given in Table 2, Sand F. In the MHFE-DG numerical scheme, we set S ini
w = S i = 1 and at x = 0, we prescribe the

air and water Neumann boundary velocities to uNn (t, 0) = At−
1
2 and uNw (t, 0) = (R − 1)At−

1
2 , respectively. At the outlet

(x = 1 m), we set uNw (t, 1) = RAt−
1
2 ms−1 and SDw (t, 1) = S i = 1. We choose the final time T = 1000 s so that the

air-front stays inside Ω.

In case of heterogeneous porous medium, we consider the Fučı́k et al. semi-analytical solution described in [14]

with the following choice of parameters: R = 0.9, S I
i = 0.3, and S II

i = 1 (for the definition of these parameters,

we refer to [14]). The properties of the Sand F in ΩI = [0, 1/2] and Sand G in ΩII = [1/2, 1] are given in Table 2.

In the numerical model, we use the following initial and boundary conditions. Initially, S w(0, x) = 0.3 in ΩI and

S w(0, x) = 1 in ΩII . At x = 0, we set SDw (t, 0) = 0.3 and ψD(t, 0) = 0 Pa. The boundary conditions at x = 1 read as

uNn (t, 1) = 0 ms−1 and uNw (t, 1) = RAt−
1
2 , where A = 5.61 · 10−4 ms−

1
2 .

We compute the numerical solutions on a series of regular meshes with decreasing mesh sizes and constant ratio

Δt/h2 and compare them to the semi-analytical solution in Figure 3. We present the experimental orders of conver-

gence (eoc) in Table 1 and show that the MHFE-DG method converge towards the exact solution.

6. Simulation of Laboratory Experiment

As an example of applicability of the MHFE-DG method, we choose to simulate the random medium laboratory

experiment described in [16], [17], and [3]. We model immiscible and incompressible injection of a light NAPL

(LNAPL) with (μn = 0.0035 kg m−1s−1 and ρn = 830 kg m−3) into an initially fully water saturated two dimensional

domain. The domain consists of a stochastically generated heterogeneous layer that is inclined between two homoge-

neous ones, see Figure 4b. Properties of sands are given in Table 2. Throughout the domain, a slow flow from right to

left is imposed by an increased water head at the right-hand-side boundary. At t = 0, LNAPL starts to be injected into
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the source zone (see Figure 4b) with a constant rate of 53 mg s−1 up to t = 9490 s. Then, the influx was stopped. Since

our improved MHFE-DG approach is designed to capture sharp material interfaces between neighboring elements,

we use the mesh shown in Figure 4a that exactly coincides with the random distribution of the heterogeneous sand

blocks. In Figure 5, we plot the LNAPL saturation distribution at t = 0.5h, 2h, 4h, and 5h. The LNAPL patterns are in

a good agreement with the laboratory measured non-wetting phase saturation patterns presented in [16], [17], and [3].

7. Conclusion

We used the mixed-hybrid finite element (MHFE) method together with the discontinuous Galerkin (DG) approach

to develop a modern numerical scheme capable of simulating flow of two immiscible and incompressible fluids in

heterogeneous porous materials. We extended the approach described in [8] so that the barrier pooling at material

interfaces can be simulated. We used the previously developed benchmark solutions to investigate the convergence

of the MHFE-DG numerical scheme towards the exact solution in both homogeneous and layered materials. In order

to demonstrate applicability of the MHFE-DG method in a highly heterogeneous medium, we simulated a laboratory

experiment described in [16], [17], and [3]. The numerical approximation of the NAPL distribution shows remarkably

good correspondance to the laboratory measured NAPL saturations in [17] indicating that the barrier effect is simulated

correctly.
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Property Sand A Sand B Sand C Sand D Sand E Sand F Sand G

Entry pressure pd [Pa] 363 484 1051 1380 2419 3450 4042

Porosity φ [−] 0.43 0.40 0.43 0.40 0.44 0.448 0.418

Int. permeability K [10−11m2] 170 61 18 6.6 2.2 1.631 1.437

Residual saturation S wr [−] 0.11 0.06 0.06 0.11 0.06 0.265 0.037

Pore size dist. index λ [−] 4.8 2.77 3.28 3.04 2.70 4.660 5.323

Table 2: Properties of sands used in the numerical simulation (taken over from [3]).
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Figure 4: Sand distribution and boundary conditions for the random heterogeneous medium simulation.
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Figure 5: Simulated LNAPL saturation S n in the random heterogeneous medium computed using the MHFE-DG numerical scheme. The time step

Δt is chosen adaptively.
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