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Abstract The paper deals with the numerical modeling of compressible single-
phase flow of a mixture composed of several components in a porous medium.
The mathematical model is formulated by Darcy’s law, components continuity
equations, constitutive relations, and initial and boundary conditions. The problem
is solved numerically using a combination of the mixed-hybrid finite element
method for the total flux discretization and the finite volume method for the
discretization of the transport equations. The time discretization is carried out by
Euler’s method. The resulting large system of nonlinear algebraic equations is
solved by the Newton-Raphson method. The dimensions of the obtained system
of linear algebraic equations are significantly reduced so that they do not depend on
the number of mixture components. The convergence of the numerical scheme is
verified in the single-component case by comparing the numerical solution with an
analytical solution.

1 Introduction

The mathematical modeling of the transport of multicomponent mixtures in the
subsurface is important for many applications including oil recovery or CO2

sequestration. The traditional approaches use either the fully implicit (fully coupled)
method or a sequential method [5,14]. The fully implicit method is stable, allows for
long time steps, but leads to extremely large systems of linear algebraic equations
whose size is proportional to the number of mixture components. Alternatively, in
sequential solution procedures like IMPEC (implicit pressure, explicit concentra-
tions) [8], a pressure equation is formulated by summing up the transport equations
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[5, 14] or by another method [1, 7, 15]. This procedure allows the size of the solved
system to be reduced, as only pressure is solved implicitly. However, this approach
is conditionally stable and the time step has to be chosen prohibitively small in many
cases.

In this paper, we improve our approach to the numerical modeling of the
compressible multicomponent single-phase flow in a porous medium proposed in
[13], where the numerical scheme was used for a simulation of methane injection
into a propane reservoir. The original approach handled a velocity discretization;
now, the total flux is discretized, and the convergence of the numerical to an
analytical solution in a special case is verified. The scheme, based on a combination
of the mixed-hybrid finite element method (MHFEM) and the finite volume method
(FVM), has advantages of both the traditional sequential and implicit methods.
As in the implicit schemes, our method leads to large systems of linear algebraic
equations, but it is possible to reduce the size of the final system of equations to a
size independent of the number of mixture components. Unlike in other sequential
approaches, no pressure equation has to be formed as pressure is evaluated directly
from the equation of state.

2 Mathematical Model

Let ˝ � R
2 be a bounded domain with porosity � [-], and .t0; �/ be the time interval

[s]. Consider the single-phase compressible flow of a fluid of nc components in the
domain at a constant temperature T [K]. Neglecting diffusion, the transport of the
components is described by the following molar balance equations [7]

@.�ci /

@t
C r � .ci v/ D fi ; i D 1; : : : ; nc; (1)

ci D ci .x; t/; x 2 ˝; t 2 .t0; �/ ;

q D cv; c D
ncX

iD1

ci ; (2)

where unknown quantities ci ; i D 1; : : : ; nc; are the molar concentrations of the
components [mol m�3]. On the right hand side of Eq. (1), fi [mol m�3 s�1] denotes
the sink/source term. The total molar flux q is expressed in (2) by the total molar
concentration c and Darcy’s velocity v [m s�1] which is given according to [2] by

v D ���1K.rp � %g/: (3)

In (3), K is the medium intrinsic permeability [m2] (generally symmetric and
uniformly positive-definite tensor), � is the viscosity [kg m�1 s�1], rp denotes a
gradient of the pressure p [Pa], g is the gravitational acceleration vector [m s�2], and
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% is the fluid density [kg m�3]. Equations (1) and (3) are coupled with constitutive
relations expressing dependencies (to be found in [6, 10, 12, 13])

p D p
�
c1; : : : ; cnc ; T

�
; % D %

�
c1; : : : ; cnc

�
; � D �

�
c1; : : : ; cnc ; T

�
: (4)

The initial and boundary conditions are given by

ci .x; t0/ D c0
i .x/; x 2 ˝; i D 1; : : : ; nc; (5a)

ci .x; t/ D cD
i .x; t/; x 2 �c.t/; t 2 .t0; �/ ; i D 1; : : : ; nc; (5b)

p.x; t/ D pD.x; t/; x 2 �p; t 2 .t0; �/ ; (5c)

q.x; t/ � n.x/ D qN .x; t/; x 2 �q; t 2 .t0; �/ ; (5d)

where n is the unit outward normal vector to the boundary @˝; �p [ �q D @˝ , and
�p \ �q D ; . Further, �c.t/ denotes the inflow part of the boundary @˝ at time t ,
i.e. �c.t/ D ˚

x 2 @˝ j q.x; t/ � n.x/ < 0
�

: On �c \�p; values of cD
i ; i D 1; : : : ; nc;

are constrained by Eqs. (4) and (5c) so that pD D p
�
cD

1 ; : : : ; cD
nc

; T
�

:

3 Numerical Scheme

The system of Eqs. (1)–(5) is solved numerically by a combination of the MHFEM,
for total flux relation (2), and the FVM, for transport Eqs. (1). We consider a 2D
polygonal domain ˝ with the boundary @˝ which is covered by a conforming
triangulation T˝ . Let us denote K the element of the mesh T˝ with area jKj,
E the edge of an element with the length jEj, nk the number of elements of the
triangulation, and ne the number of edges of the mesh.

Discretization of the Total Molar Flux Unlike in [13], where the velocity v was
discretized, here, the total molar flux q is approximated in the Raviart-Thomas space
of the lowest order (RT0

K ) over the element K 2 T˝ as

q D
X

E2@K

qK;EwK;E; (6)

where the coefficient qK;E is the numerical flux of vector function q through the
edge E of the element K with respect to outer normal, and wK;E represents the
piecewise linear RT0

K-basis function associated with the edge E (see [3, 4, 11, 13]).
If we express the pressure gradient from Darcy’s law (3), multiply both sides

of the obtained relation by the basis function wK;E; integrate over K , use (6) and
properties of the RT0

K space, we derive a discrete form of (2) and (3)

qK;E D cK��1
K

0

@˛K;EpK �
X

E02@K

ˇK;E;E0pK;E0 C �K;E%K

1

A ; E 2 @K: (7)
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Green’s theorem and the mean value theorem were also employed in the derivation
[13]. In (7), ˛K;E; ˇK;E;E0 , and �K;E are coefficients dependent on the mesh
geometry and on the local values of permeability (details in [13]); pK is the cell
pressure average, pK;E0 is the edge pressure average, and �K; %K denote the mean
values of viscosity and density over the cell K , respectively.

The continuity of the flux and pressure on the edge E between neighboring
elements K; K 0 2 T˝ can be written as

qK;E C qK0;E D 0; pK;E D pK0;E DW pE: (8)

Boundary conditions (5c) and (5d) in a discrete form read as

pK;E D pD.E/; 8E � �p; (9a)

qK;E D qN .E/; 8E � �q; (9b)

where pD.E/ is the prescribed value of the pressure p averaged on the edge E , and
qN .E/ is prescribed flux through the edge E .

The numerical fluxes can be eliminated by substituting qK;E from (7) into (8) and
(9b). For further derivation, let us consider time dependent quantities at time tnC1

denoted by upper index n C 1. Then, Eqs. (7)–(9) transform to the following system
of ne linear algebraic equations

FE �

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

P
KWE2@K

cnC1
K

�
�nC1

K

��1

 
˛K;EpnC1

K � P
E02@K

ˇK;E;E0pnC1
K;E0 C �K;E%nC1

K

!

� P
KWE2@K\�q

qN .E/ D 0; 8E 6� �p;

pnC1
K;E � pD.E/ D 0; 8E � �p :

(10)

Herein,
P

KWE2@K denotes the sum over the elements adjacent to the edge E:

Approximation of the Transport Equations Transport Eqs. (1) with the initial
and boundary conditions (5) are discretized by the FVM [9]. Equation (1) is
then integrated over an arbitrary element K . Using Green’s theorem, applying the
mean value theorem, and denoting �K; ci;K; fi;K; the averaged values of �; ci ; fi

.i D 1; : : : ; nc/ over the cell K , respectively, the discrete form of (1) reads as

d.�Kci;K/

dt
jKj C

X

E2@K

ezi;E

Z

E

q � nK;E D fi;K jKj; (11)

where ezi;E denotes the mole fraction zi D ci =c of the i -th component on the edge
E , and q is given by (2). The integral in (11) is equal to the numerical flux qK;E:

Let us suppose that the porosity does not depend on time. The time derivative
of ci;K in (11) is approximated by the time difference with a time step �tn: Using
Euler’s method [9], we obtain for every n; all K 2 T˝ , and i D 1; : : : ; nc
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FK;i � �K jKjc
nC1
i;K � cn

i;K

�tn
C
X

E2@K

ezi;E
n qnC1

K;E

�
pnC1

K;E ; cnC1
1;K ; : : : ; cnC1

nc ;K

�
�fi;K jKj D 0;

(12)

where qnC1
K;E is given by (7). The value of ezi;E

n is chosen by upwinding as

ezi;E
n D

8
ˆ̂<

ˆ̂:

zn
i;K for qnC1

K;E � 0;

zn
i;K0 for qnC1

K;E < 0 ^ E 6� @˝ W K \ K 0 D E;

zD;n
i;E for qnC1

K;E < 0 ^ E � @˝;

(13)

where zD
i represents the mole fraction of the i -th component on the inflow boundary

computed from (5b). Note that the scheme is almost fully implicit, the only term in
(12) which is evaluated explicitly is the value of ezi;E

n:

The initial and boundary conditions (5a) and (5b) are approximated as

c0
i;K D c0

i .K/; 8K 2 T˝; i D 1; : : : ; nc; (14a)

ezi;E
n D zD

i .E; tn/; 8E � �c.t/; i D 1; : : : ; nc; t0 < tn < �: (14b)

Combining the MHFEM and FVM Schemes Let us denote FE and FK;i ; for
edge E 2 f1; : : : ; neg; element K 2 f1; : : : ; nkg; and component i 2 f1; : : : ; ncg;
the left hand sides of Eqs. (10) and (12) with qnC1

K;E substituted from relation (7).
The cell-averaged values pK D p

�
c1;K; : : : ; cnc;K

�
, % D %K

�
c1;K; : : : ; cnc ;K

�
, and

�K D �
�
c1;K; : : : ; cnc ;K

�
are evaluated using (4). The system of ne C nk � nc

equations

F D �
F1; : : : ; Fne I F1;1; : : : ; F1;nc ; : : : ; Fnk;1; : : : ; Fnk;nc

�T D 0

for unknown molar concentrations cnC1
1;K ; : : : ; cnC1

nc;K; K 2 f1; : : : ; nkg; and edge-
averaged pressures pnC1

E ; E 2 f1; : : : ; neg, is a nonlinear system of algebraic
equations which we solve using the Newton-Raphson method (NRM). The resulting
system of linear algebraic equations is shown in Fig. 1, where the sparse Jacobi
matrix is unsymmetric, and the unknown vector is represented by corrections of
molar concentrations and edge pressures. The nonzero black-colored blocks in Fig. 1
are given by partial derivatives

.JK/i;j D @FK;i

@cnC1
j;K

;
�
JK;E

�
i

D @FK;i

@pnC1
K;E

;
�
JE;K

�
j

D @FE

@cnC1
j;K

; JE;E0 D @FE

@pnC1
K;E0

;

(15)

where JE;E0 is element of JE;E0 and i; j D 1; : : : ; nc I K D 1; : : : ; nk I E; E 0 D
1; : : : ; ne: The partial derivatives in (15) can be evaluated analytically using (4),
(10), and (12).
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J1

J2

Jnk

JK,E

JE ,K JE ,E ′

c1,1 cnc,1. . . c1,nk
cnc,nk. . .c1,2 cnc,2. . .

p1 pne

p1

pne

c1,1

cnc,1

c1,2

cnc,2

c1,nk

cnc,nk

...

...

...

δc1,1

δcnc,1

δc1,2

δcnc,2

δc1,nk

δp1

δpne

δcnc,nk

−F1,1

−F1,nc

−F2,1

−F2,nc

−Fnk,nc

−Fnk,1

−F1

−Fne

JK

Fig. 1 Structure of the system of linear algebraic equations in the NRM

The size of the system in Fig. 1 can be reduced by inverting the JK blocks for
all K (the inversion is possible since the blocks are diagonally dominant for small
time steps) and eliminating vectors JE;K for all E; K . Thus, we derive a reduced
system of ne equations for ne corrections of pressures ıpE with the same structure
as JE;E0 . Once ıpE are computed, corrections of concentrations ıc1;K ; : : : ; ıcnc ;K

on each cell K can be evaluated by the back-substitution utilizing the JK inversions.

4 Experimental Analysis of Convergence

In this section, we verify convergence of the proposed scheme using the experimen-
tal convergence analysis. Choosing nc D 1; � D 1; f D 0; g D 0; K D 1; � D 0:5;

and p D c; Eqs. (1) and (3) transform to

@c

@t
C r � .cv/ D 0; v D �2 rc: (16)

We set the initial and boundary conditions as follows
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c.x; t0/ D B2.x; t0/; x 2 ˝; (17a)

p.x; t/ D B2.x; t/; x 2 �p; t 2 .t0; �/ ; (17b)

q.x; t/ � n.x/ D 0; x 2 �q; t 2 .t0; �/ ; (17c)

where B2.x; t/ is the Barenblatt solution of (16) prescribed by

Bm.x; t/ D t�k

2

4
 

1 � k.m � 1/

2m

jxj2
t2k

!

C

3

5
1=.m�1/

; m D 2; (18)

where cC D max.c; 0/ and k D .m C 1/�1: For any time t > 0; solution (18) has a
compact support Œ �tk

p
2m=.k.m � 1//; tk

p
2m=.k.m � 1// � becoming wider in

a finite speed [16].
Using the numerical scheme derived in Sect. 3, we solve Eqs. (16) and (17) in a

rectangular domain 100 � 20 m2, where �p is composed of line segments x D 0

and x D 100 .0 � y � 20/; while �q contains the rest of the boundary @˝; i.e. the
horizontal and vertical boundary y D 0 and y D 20. Both parts of �p are outflow
boundaries, thus �c D ;: The initial time t0 D 104 s and the final time � D 106 s.

The numerical solution is compared with the analytical one (18) by means of
the experimental orders of convergence (EOCs). Every numerical (element-wise
constant) solution is computed on a homogeneous regular triangular grid containing
n D 2 � nx � ny triangles, and projected to a grid on which the analytical solution
is computed. The analytical solution is element-wise linear by evaluating from (18)
three values on edges of each element. Error En between the analytical solution
and the projection of the numerical solution (to the grid of the analytical solution)
originally computed on the grid n in three consistent norms L1; L2; and L1 is
evaluated.

In Table 1, EOCs and errors of concentration on five grids with nx D ny and
the finest nx D 320 are included. The analytical solution is interpolated on the grid
nx D 640. The time step for the solution nx D 320 is chosen constant �t D 386:7 s.
On every coarser grid, �t is four times larger with each mesh refinement (i.e. �t 	
1=n) to observe EOC of the space discretization.1

The numerical solutions computed on the grids with a different nx and ny are
compared with the analytical solution interpolated on the grid of 2 � 1;600 �
320 cells in Table 2. Again, �t is four times larger with each mesh refinement
(i.e. �t 	 1=n)1, �t D 386:7 s for the numerical solution with n D 2 � 800 � 160.

1For �t � 1=
p

n all EOCs equal to 1 were observed in L1 and L2 norms, and the error of the
time discretization, thus, prevailed.
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Table 1 EOCs and errors of concentration c at time � D 106 s compared with the analytical
solution on the grid nx D 640 (n D 2 � nx � nx elements) and the time step �t D 386:7 s for the
numerical solution nx D 320. On coarser grids, �t � 1=n

Grid (n) kEnk1 EOC1 kEnk2 EOC2 kEnk1 EOC1

2 � 20 � 20 2:5113 � 10�2 6:1743 � 10�4 2:8684 � 10�5

2 � 40 � 40 7:0646 � 10�3
1.8297

1:8055 � 10�4
1.7739

1:3271 � 10�5
1.1119

2 � 80 � 80 2:5667 � 10�3
1.4607

7:0798 � 10�5
1.3506

6:2704 � 10�6
1.0817

2 � 160 � 160 1:1108 � 10�3
1.2083

3:2653 � 10�5
1.1165

2:8119 � 10�6
1.1570

2 � 320 � 320 5:1678 � 10�4
1.1040

1:5969 � 10�5
1.0319

1:0827 � 10�6
1.3770

Table 2 EOCs and errors of concentration c at time � D 106 s compared with the analytical
solution on the grid n D 2 � 1;600 � 320 and the time step �t D 386:7 s for the numerical
solution n D 2 � 800 � 160. On coarser grids, �t � 1=n

Grid (n) kEnk1 EOC1 kEnk2 EOC2 kEnk1 EOC1

2 � 50 � 10 2:3185 � 10�2 5:675 � 10�4 1:8943 � 10�5

2 � 100 � 20 5:5911 � 10�3
2.0520

1:3711 � 10�4
2.0493

5:7199 � 10�6
1.7276

2 � 200 � 40 1:5999 � 10�3
1.8051

4:0231 � 10�5
1.7690

2:5228 � 10�6
1.1810

2 � 400 � 80 5:5262 � 10�4
1.5337

1:4871 � 10�5
1.4358

1:1283 � 10�6
1.1608

2 � 800 � 160 2:2510 � 10�4
1.2957

6:6297 � 10�6
1.1655

4:3386 � 10�7
1.3789

5 Conclusion

In this work, we have developed a numerical scheme based on a combination of the
MHFEM and FVM for simulation of single-phase compressible multicomponent
flow in a porous medium. We proposed a technique reducing significantly the system
into a size that is independent of the number of mixture components. Consequently,
computational costs are comparable with the traditional sequential approaches. Our
method provides an exact local mass balance (up to the non-linear solver error)
which is important for solving problems especially in a heterogeneous medium.
Convergence of the numerical scheme was verified by evaluating EOCs in a special
case of the problem for which an analytical solution is known. The EOCs range
from 1:03 to 2:05 behaving similarly in both examined cases.
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