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Praze
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Abstrakt: Práce představuje matematický model dvoufázového nemı́sivého a nestlačitelného
prouděńı v rigidńım heterogenńım porézńım prostřed́ı. V rámci práce jsou shrnuta testovaćı
řešeńı. Dále je odvozeno numerické schéma založené na metodě konečných objemů (VCFVM),
které umožňuje zkoumat dynamický efekt v kapilárńım tlaku. Numerické schéma je testováno
pomoćı analytických a semianalytických řešeńı a následně využito pro simulaci laboratorńıch
experiment̊u s kapilárńım tlakem za dynamických podmı́nek. Význam dynamického efektu
v matematických modelech je diskutován za použit́ı laboratorńıch dat s d̊urazem na ma-
teriálová rozhrańı. V druhé části práce je prezentováno pokročilé numerické schéma založené na
smı́̌sené-hybridńı metodě konečných prvk̊u (MHFE) společně s nespojitým Galerkinovým (DG)
př́ıstupem. Toto numerické schéma je schopeno řešit v́ıcefázové prouděńı v porézńım prostřed́ı
s ostrými materiálovými rozhrańımi. Kromě toho může simulovat akumulaci nesmáčivé fáze
na materiálovém rozhrańı. MHFE-DG metoda je testována pomoćı analytických a semianaly-
tických řešeńı. Dále je tato metoda použita na simulaci několika dvourozměrných úloh popsaných
v literatuře. Všechny modely mohou být použity pro realistické tekutiny a materiálové vlastnosti
určené pomoćı laboratorńıch experiment̊u.
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Key words: Flow in porous medium, two-phase flow, capillarity, dynamic effect in capillary
pressure, closed-form solutions, Buckley-Leverett solution, McWhorter-Sunada semi-analytical
solution, vertex-centered finite volume method, mixed-hybrid finite element method, disconti-
nuous Galerkin method, extended capillary pressure condition, barrier effect



I confirm having prepared the thesis by my own and having listed all used sources of information
in the bibliography.

Radek Fuč́ık
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State of Art

In the past decades, the interest in understanding and prediction of multiphase flow in the
subsurface has increased extensively due to the widespread increase of awareness of the most
alarming contemporary problems such as the water contamination by organic solvents. Ad-
ditionally, the importance of the traditional petroleum engineering problems increases as the
worldwide reserves of the easily-obtainable-petroleum are running low. Compared to the pre-
vious decades, the unflagging boom in the increasing computer power allows to develop more
complex, reliable, and accurate mathematical models capable of simulating such multiphase flow
problems in the subsurface.

A reliable model of capillarity is one of the key aspects in the modelling of multiphase flow of
immiscible and incompressible fluids in porous media. In most past modelling efforts, various
capillary pressure–saturation models by Brooks and Corey [10] or van Genuchten [48] were
developed based on laboratory experiments where the capillary pressure and saturation were
measured under equilibrium conditions. However, the question has been raised on whether these
static models capture the dynamic behavior accurately when the fluid phases are in motion.
Recently, alternative models based on both empirical and theoretical approaches have been
proposed to deal with these dynamic effects associated with fluid flow.

Another interest is focused upon the Non-Aqueous Phase Liquid (NAPL) behavior at sharp
texture transitions in the petroleum reservoirs or contaminated aquifers. Laboratory experi-
ments show that such material inhomogeneities can increase the retention of the contaminants
immensely. Therefore, it is desirable to develop mathematical and numerical models such that
the behavior of the NAPLs is simulated correctly. These models then serve as a key tool when
dealing with various multiphase flow problems in the industry, ecology, and cutting–edge tech-
nology.

Research Goals

The primary goal of the dissertation thesis is to investigate flow of two immiscible and incom-
pressible fluids (phases) in heterogeneous porous materials using mathematical models.

In details, the main goals of this thesis are

� to present a mathematical model of two-phase immiscible and incompressible flow in a non-
deformable heterogeneous porous material including the dynamic effect in the capillary
pressure,

� to present an overview of available benchmark solutions,

� to develop a numerical scheme that can be used to investigate the dynamic effect in
capillarity,

� to discuss the importance of such integration of the dynamic effect in the mathematical
model using the laboratory-determined data, and

� to develop a higher-order numerical method capable of solving the multiphase flow prob-
lems in a porous medium with sharp material interfaces.

The models should be applicable for realistic fluid and material properties determined by
means of laboratory experiments.
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Methods Used

There are two distinct numerical schemes developed in this thesis. First, a numerical model
capable of simulating the dynamic effect in capillarity is based on the Vertex-Centered Finite
Volume Method (VCFVM) in one dimension. The time discretization is carried out using the
backward Euler scheme. The resulting non-linear system of equations is solved using the Newton-
Raphson iteration method, where the Jacobi matrix is block tri-diagonal. A special method is
developed to treat conditions at material interfaces and verified using benchmark solutions.

Another numerical scheme is designed to simulate the multiphase flow in heterogeneous porous
media that is based on the Implicit-Pressure-Explicit-Saturation (IMPES) approach, where the
Mixed-Hybrid Finite Element (MHFE) method is used together with the Discontinuous Galerkin
(DG) approximation. The resulting systems of linear equations are solved either by direct solvers
(for smaller systems) or iteratively using the Conjugate Gradient (CG) method.

Stability of the numerical schemes is achieved using the upwind technique and the slope limiter
procedure when using the higher-order MHFE-DG approach.

Research Results

In this thesis, we present the complete derivation of both numerical schemes. The numeri-
cal schemes are verified using benchmark solutions developed by Buckley and Leverett [11],
McWhorter and Sunada [80], van Duijn and de Neef [28], and by the author [45], [46].

The importance of the dynamic effect in capillarity is investigated using the VCFVM. The
validity of the numerical scheme is discussed by means of the semi-analytical solutions. The
numerical scheme is used to simulate a drainage experiment where the sand and fluid proper-
ties were known. Then, the numerical scheme is used to simulate a laboratory experiment in
a homogeneous column including three major models of the dynamic effect coefficient τ and
the respective results are presented and discussed. The presented numerical scheme can handle
porous medium heterogeneity and it is used to simulate a fictitious experimental setup with two
different sands. As a result, the penetration time of air phase through layered porous medium
for models including dynamic effects varied between 50% to 150% compared to static models of
capillary pressure–saturation relationship. Additionally, the accumulation time of air at a mate-
rial interface (i.e., delay of the air at the interface due to capillary barrier effect) is investigated
as a function of the ratio between air-entry pressure values of the adjacent sands emphasizing
the differences between the dynamic and static capillary pressure models.

The MHFE-DG method is tested using the benchmark solutions available for two-phase flow
in homogeneous and heterogeneous porous media. Additionally, a comparison with the VCFVM
is quantified using L1 and L2 error norms. It is found that the MHFE-DG approach involves
less numerical diffusion than the VCFVM when simulating an advection dominated flow. In
case of capillarity driven flow, both VCFVM and MHFE-DG methods give similar results for
the one-dimensional benchmark solutions. A series of simulations is computed for two-phase
flow problems in heterogeneous porous media showing that the MHFE-DG numerical scheme
simulates the behavior of fluids at material interfaces in agreement with laboratory determined
data. Additionally, the difference between the first-order finite volume (MHFE-FV) and the
second-order discontinuous Galerkin (MHFE-DG) approach is found to be less important in all
two-dimensional simulations with both gravity and capillarity included.
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INTRODUCTION

Motivations

Today, most of the industrially developed countries invest substantial amount of resources to
understand and protect drinking water in the subsurface. Due to industrial activities, the water
saturated zones of aquifers are endangered by substances with a very low solubility in water
such as oil or chlorinated hydrocarbons. When these substances, generally referred to as Non-
Aqueous Phase Liquids (NAPLs), enter the aquifer, they can serve as a long-time source of
groundwater contamination. A prediction of their behavior in the subsurface is an important
step towards their partial or complete removal from the contaminated area. Therefore, two-
phase processes have been studied intensively in engineering, soil physics, and hydrogeology
over several decades [5], [57].

Currently, there exists two principal approaches in the prediction of flow and transport in the
subsurface: laboratory experiments and mathematical modelling. Multiple mathematical models
have been developed based on the Darcy law [23] that describes a linear relationship between the
velocity of water and the pressure gradient in a column filled with a porous material. By means
of the laboratory experiments, the material and fluid properties are determined and further
investigated in order to verify the mathematical models. As a result, mathematical models
calibrated on these laboratory determined data serve as a reliable instrument in simulation of
flow in porous media in the real-life applications.

The propagation of NAPLs through water saturated zones is usually driven by two primary
mechanisms. The NAPL is displaced due to external forces (externally imposed flow, gravity)
and capillarity. Capillary forces, well observed in thin tubes called capillaries, originate from
the contact of a solid matrix and two immiscible phases within the porous material. Not only
in porous media, this phenomenon of capillarity plays an important role also in many other
fields, for instance, the capillary action is essential for the drainage of constantly produced
tear fluid from the eye. Especially in heterogeneous porous materials, the capillary forces have
an important impact on the flow across interfaces between materials with different capillarity
properties. These capillary forces are responsible for the complex entrapment morphologies of
NAPL shown in the figure on page 2.

In this thesis, we address several topics concerning flow of two immiscible and incompressible
fluids (phases) in homogeneous and heterogeneous porous materials.

A reliable model of capillarity is the key aspect in the modelling of two-phase flow of immisci-
ble and incompressible fluids in porous media. Various capillary pressure–saturation models by
Brooks and Corey [10] or van Genuchten [48] were developed based on laboratory experiments
where the capillary pressure and saturation were measured under equilibrium conditions. How-
ever, both empirical and theoretical studies indicate that these static capillary pressure models
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The behavior of NAPL in heterogeneous porous materials. Pictures show a light non-aqueous phase
liquid (red spill) in a water saturated layered medium with an inclined interface (left) and highly
heterogeneous medium with random distribution of heterogeneities (right), respectively (provided
by CESEP, Colorado School of Mines).

may not be suitable to model behavior of fluids when the system is in motion. Thus, a mo-
dified capillary pressure–saturation relationship has been proposed that includes an additional
term which is referred to as the dynamic effect term. In order to understand implications of
the dynamic effect in capillarity, several laboratory experiments and mathematical simulations
have been carried out by various researchers. However, many questions still remain unanswered
such as the influence of the dynamic effect coefficient on a flow in heterogeneous porous mate-
rials. Additionally, a suitable functional model for the dynamic effect term with respect to the
saturation is still unknown.

A lot of mathematical models have been developed that describe the displacement and trans-
port processes in the subsurface. Currently, there exists a series of commercial software packages
like Fluent or MODFLOW that are used to model NAPL contamination problems and are quite
often employed in environmental projects of cleanup of old ecological contaminations. Most of
them are based on the basic finite difference (FD) or finite volume (FV) methods that have
only a first–order of accuracy. This implies that their results are usually distorted by numerical
diffusion. These deficiencies can be resolved using a higher–order numerical scheme based on
the mixed-hybrid finite element (MHFE) method that allows for accurate representation of the
velocities across sides of a finite element. Additionally, such approach can be further improved
by using the discontinuous Galerkin (DG) method that approximates saturation as piecewise
discontinuous per elements since the saturation is usually discontinuous across material inter-
faces. In a series of papers [63], [64], [65], such a combined MHFE-DG approach was investigated
and a numerical scheme suitable for simulating flow in heterogeneous porous media has been
proposed. However, some aspects of this MHFE-DG method have not been fully resolved such
as thorough investigation of the convergence of the numerical scheme or a simulation of NAPL
pooling at material interfaces referred to as the capillary barrier effect.

The text is organized in four chapters in the following way.

In Chapter 1, we present fundamental description of the mathematical model of multiphase
flow in porous media. We emphasize the differences between the definitions of the capillary
pressure pc at the micro–scale and macro–scale. In particular, we focus on the dynamic effect
in the capillary pressure–saturation relationship developed in [49], [50], [54], and [56]. We
conclude Chapter 1 by a summary of the mathematical model represented by a system of partial
differential equations supplied with the initial and boundary conditions.

In Chapter 2, we present a brief overview of the analytical and semi-analytical solutions
together referred to as the benchmark solutions. First, we describe the Buckley and Leverett
analytical solution applicable to pure hyperbolic problems. Then, a family of semi-analytical
solutions are described that can be obtained for pure diffusion and advection–diffusion problems
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in both homogeneous and layered porous materials. We extended applicability of these semi-
analytical solutions to a larger set of input conditions and even to a larger family of admissible
problems than in the original paper [80].

In Chapter 3, the significance of the dynamic effect in the capillary pressure–saturation re-
lationship is investigated. We propose a fully implicit numerical scheme based on the Vertex–
Centered Finite Volume Method (VCFVM) capable of solving systems of multiphase flow equa-
tions with the dynamic effect in capillarity. We use the benchmark solutions summarized in
Chapter 2 to verify that the numerical scheme converges for the static (classical) model of
the capillary pressure pc. These numerical solutions obtained using the static pc are used as
a reference solution when investigating the significance of the dynamic effect in the capillary
pressure.

In Chapter 4, we consider a higher-order numerical scheme that is suitable for simulation
of the two-phase flow including the capillary barrier effect with static capillary pressure only.
A numerical method is derived that combines the Mixed-Hybrid Finite Element (MHFE) and
the Discontinuous Galerkin (DG) methods. The numerical scheme is based on [4], [33], [65], [63],
and during its derivation, several important modifications are proposed to assure the existence
and uniqueness of the numerical solution. Our main goal is to extend the MHFE-DG method for
heterogeneous porous media to simulate pooling effects at material interfaces (the barrier effect).
The benchmark solutions from Chapter 2 are used to investigate convergence of the MHFE-
DG method. To demonstrate its applicability, several laboratory experiments in heterogeneous
porous media are simulated.

In Appendix A, we describe basis functions of the piecewise linear discontinuous Galerkin
space in R1 and R2. In Appendix B, the description of all sand and fluid parameters, to which
we refer in the text, is presented for convenience.
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CHAPTER 1

MODELLING IMMISCIBLE FLUID FLOW IN POROUS MEDIUM

I
n this chapter, we present an introduction to the mathematical modelling of the multiphase
flow of immiscible and incompressible fluids in a porous medium. First, we describe the
fundamental terminology and give definitions of the respective physical quantities. Then,

we provide governing equations for single and two-phase flow.

1.1. Porous Medium

A porous medium is a body composed of a persistent solid matrix (also called solid phase)
and a void space (or a pore space), [5]. Figure 1.1 shows an example of a two-dimensional
cross-section of a porous medium filled with two liquid phases: water and oil.

In its most general sense, almost every material around us can be considered as porous if
it contains void space within. However, this definition is not useful for the development of
a relevant mathematical model. When in contact with water, for instance, a slice of the famous
Emmental cheese has a significantly different behavior than a bath sponge, although they fit the
commonly used definition. Once wetted, the sponge will absorb substantial amount of water by
its microscopic interconnected pore network due to capillarity. In contrast, the capillary forces
will be negligible in the case of large, single cheese holes.

The size and morphology is the key in understanding processes in a porous medium. Hence, the
following assumptions are placed upon the geometry and dimensions of the porous medium, [2]:

A. The pore space is interconnected since no flow can take place in a disconnected
void space.

B. The dimensions of the void space must be sufficiently large compared to the
dimensions of the fluid molecules.

C. The dimensions of the pore space must be small enough so that the fluid flow is
governed by adhesive forces at fluid-solid interfaces and cohesive forces at fluid–
fluid interfaces in multiphase systems. This excludes cases like a network of pipes
from the definition of porous medium.

1.2. Phase

A phase is considered as a chemically homogeneous portion of a system that is separated from
other such portions by a definite physical boundary.
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water

oil

solid matrix

Figure 1.1.: Illustration of a porous medium filled with water and oil (two-phase system).

The necessity of a definite physical boundary between two or more phases implies that no
more than one gaseous phase can be present in a multiphase system since gases are always
completely miscible. A phase can be formed from one or more fluids and it is characterized by
its dynamic viscosity µ [Pa s] and volumetric mass density % [kg m−3].

Flow of water and other phases such as oil, chlorinated hydrocarbons, CO2, or air in porous
media is studied in the majority of cases. Generally, we use the abbreviation NAPL which
stands for the Non-Aqueous Phase Liquid, i.e., liquids immiscible with water. These liquids can
be further divided into dense NAPLs (DNAPLs) and light NAPLs (LNAPLs) with higher and
lower density than water, respectively.

1.3. Continuum Approach to Porous Medium

Consideration of different dimension scales is important in the modelling of flow in porous media.
Figure 1.2 depicts different magnifications of a porous medium from the macroscale (a) through
the microscale (b) to the molecular nanoscale (c).

oil source

oil
spill

Field scale ∼ 10 m Pore scale ∼ 10−3 m Molecular scale ∼ 10−9 m

solid matrix oil water

Figure 1.2.: Different scales in a porous medium illustrates a typical contamination problem.

Equations of fluid dynamics in porous media need to be provided with a set of boundary and
initial conditions. However, as shown in Figure 1.2, the boundary conditions for a macroscopic
problem can neither be prescribed at microscale nor at molecular scale due to practically random
geometry of the porous medium. In order to develop a mathematical model, a concept of porous
medium as a continuum at macroscopic scale is needed.

At each point of the macroscale continuum, an average of the microscopic quantities over
a representative elementary volume (REV) is assigned. Bear and Verruijt [5] define the REV
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as a volume that is sufficiently large to statistically estimate all relevant parameters of the void
space configuration and small enough to be considered as a negligible portion of the total volume
from the macroscopic scale. If such a REV cannot be found then the presented macroscopic
theory of flow in porous media cannot be applied.

This process leads to macroscopic equations that are independent of the exact description
of the microscopic configuration, because only statistical properties of the porous medium and
the fluid phases are taken into account. Furthermore, at the macroscale microscopic (or even
nanoscopic) physical quantities are represented only as averages over a chosen volume which
may lead to the lack of information such as interfacial contact surface between the fluid–fluid
and fluid-solid systems.

1.4. Porosity

Porosity φ is a macroscopic quantity that describes the ratio of void space within a volume of
a porous material to that volume. Mathematically, the porosity is defined as

φ(x0) =
1

|V |3

∫

V

γ(x)dx, (1.1)

where the volume V = B(x0, r) is a ball of a radius r centered around x0 and γ is the indicator
function of the void space of the porous medium in a volume V given by

γ(x) =

{
1 for x in the void space,
0 for x in the solid matrix,

∀x ∈ V. (1.2)

In (1.2) the macroscale porosity is obtained by averaging the microscopic void space indicator
function over V , where V has to be chosen such that the value of the averaged quantity does
not depend on the exact size of the averaging volume. A rough plot of porosity values in
function of the averaging volume size r is sketched in Figure 1.3. In an infinitesimally small
volume, the porosity is strictly 0 or 1 based on a given position inside a solid grain or void
space, respectively. As the averaging volume increases in size, the porosity becomes more or less
constant up to a limit, where macroscopic inhomogeneities occur (fractures, different grain sizes,
etc.). The averaging volume V is considered as the representative elementary volume REV, if
there exist radii rmicro and rmacro such that the value of the averaged quantity does not depend
on the radius r within the range

rmicro � r � rmacro. (1.3)

Another way to obtain macroscopic quantities out of the microscale variables is the homoge-
nization technique which is based on the mathematical theory on asymptotic functional expan-
sion, [61]. Some of its principles have been discussed in [40].

1.5. Single Phase Flow

We first summarize equations describing flow of a single phase only. In the following, we apply
the mass-conservation law to the fluid in porous medium and present the famous Darcy law.

1.5.1. Mass Balance

Let us consider a porous domain Ω filled with a single fluid phase. Macroscopic fluid mass
conservation law, or the continuity theorem, is expressed by the following partial differential
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0

1

Φ

rmicro rmacro
mean REV
radius r

macroscale
inhomogeneities

homogeneous
medium

Figure 1.3.: Porosity as a function of the REV mean radius r.

equation
∂(φ%)

∂t
+∇·(% u) = %F, in Ω, (1.4)

where the quantities have the following meaning:

φ(x) [−] Porosity of the porous medium defined in (1.1).
u(t,x) [m s−1] Macroscopic apparent velocity. This velocity is observed at the

macroscale. On the microscopic level, the flow takes only place
through the pore channels of the porous medium where the average
velocity u/φ is observed, see [2].

%(t,x) [kg m−3] Volumetric mass density of the fluid that can depend on position
or pressure for a compressible fluid.

F (t,x) [s−1] Specific source/sink term.

1.5.2. Darcy Law

By using the local averaging techniques [114], [94] or the homogenization procedure [61], the
momentum conservation of the Navier-Stokes equation at the microscale can be reduced to
a macroscopic principle

u = − 1

µ
K(∇p− % g), (1.5)

where the quantities have the following meaning:

u(t,x) [m s−1] Macroscopic apparent velocity already introduced in (1.4).
K(x) [m−2] Symmetric tensor of absolute permeability, that can depend on po-

sition in the case of heterogeneous medium. In homogeneous and
isotropic porous medium, K = K I, where I is the identity tensor
and K is the scalar absolute permeability, also called intrinsic soil
permeability.

µ(t,x) [Pa s] Dynamic viscosity of the fluid.
p(t,x) [Pa] Fluid pressure.
g [m s−2] Gravitational acceleration vector.

This principle was first described by Henry Darcy, a French engineer who investigated the flow
of water in vertical homogeneous sand filters in connection with the fountains of the city of
Dijon. In 1856, he published his observations and the law (1.5) in [23]. It is valid only for slow
flows of Newtonian fluids through porous media with rigid solid matrices.
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The validity range of Darcy law can be expressed by the Reynolds number Re given by

Re =
δ

ν
‖u‖. (1.6)

It is a dimensionless quantity that characterizes the ratio of the fluid velocity ‖u‖ with respect
to the fluid kinematic viscosity ν [m2 s−1] and the representative microscopic length δ [m]
describing the mean diameter of grain size in the solid matrix. The Darcy law (1.5) is valid for
values of Re from 1 (fine sand) to 10 (coarse sand), which represents most of the practical porous
media problems. More complex nonlinear Darcy law has to be employed for greater values of
Re, e.g., for modelling of flow in a very close vicinity of large pumping or recharging wells, or
in very porous matters like cavernous limestone or larger stones [5]. In this thesis, we assume
that (1.5) holds in all considered cases.

1.6. Multiphase Flow

In this section, we study basics of the two-phase flow in a porous medium, but the respec-
tive quantities can be generalized for a multi-phase flow formulation as well. We resume the
definitions and explanations presented in [2], [5], and [57].

1.6.1. Saturation

Let us consider a REV of a porous medium occupied by several phases. At a microscale, every
point of the REV is occupied either by the solid phase or by exactly one of the fluid phases. Let
γα denotes the indicator function of the fluid phase α defined by a formula similar to (1.2) as

γα(t,x) =

{
1 if x belongs to phase α at time t
0 otherwise

∀x ∈ Ω. (1.7)

This α-phase indicator function allows us to define a dimensionless macroscopic quantity called
saturation Sα [−] of the phase α by the relation

Sα(t,x0) =

∫

REV
γα(t,x)dx

∫

REV
γ(t,x)dx

, (1.8)

where x0 ∈ REV .

The α-phase saturation Sα expresses the volumetric ratio of the phase α to the total void
space at a given position x and time t. Therefore, the saturation is always bounded between
0 and 1,

0 ≤ Sα ≤ 1, (1.9)

and the sum of the α-phase saturations over all phases in the system is 1

∑

α

Sα = 1. (1.10)

By Greek subscripts α or β, we denote quantities that correspond to the phase α or β,
respectively.

9
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1.6.2. Residual Saturation

It is well known that water cannot be displaced entirely from a porous medium. Thus, a residual
saturation Sr,w is introduced which expresses the minimal water saturation that will retain in the
porous medium due to adhesion effects with respect to the solid matrix. Additionally, a residual
saturation Sr,n can be also defined for the non-aqueous phase which expresses the irreducible
portion of such phase that cannot be mechanically displaced. The remnant non-aqueous phase
can be further reduced by diminishing the surface tension of the phase by the chemical substances
called surfactants or by increasing the temperature, [2].

1.6.3. Effective Saturation

The effective saturation Se,α [−] defined as

Se,α =
Sα − Sr,α
1−∑

β

Sr,β
(1.11)

describes only the volumetric portions of the fluid phase that can be displaced mechanically.

1.6.4. Governing Equations

The main idea behind equations describing the multi-phase flow is based on the assumption that
every fluid phase α in the porous medium is governed by its continuity theorem (1.4) and Darcy
law (1.5), whereas the momentum transfer between the phases is negligible. The α-phase mass
balance takes the following form

∂(φ%αSα)

∂t
+∇·(%α uα) = %αFα, (1.12)

and the Darcy law for the phase α reads as

uα = − 1

µα
Kα(∇pα − %α g). (1.13)

The continuity theorem (1.12) includes the saturation as a consequence of the reduction of
the void space volume φV in (1.4) into a volume φSαV occupied by the phase α. In (1.13) the
α-phase permeability tensor Kα is a function of Sα and can be decomposed into

Kα = kr,α(Sα) K, (1.14)

where the function kr,α is the relative permeability of the phase α which describes the decrease
of the permeability due to the presence of other phases. Its definition and models are further
discussed later in Section 1.8. The term kr,α/µα is frequently denoted as the α-phase mobility
λα,

λα =
kr,α
µα

, (1.15)

which allows to rewrite the Darcy law as

uα = −λαK(∇pα − %α g). (1.16)

1.7. Capillarity

From now on, we will consider only a flow of two phases in porous media. In order to close the
system of equations for the two-phase flow given in the previous sections, i.e., (1.12), (1.16),
and (1.10), we add one more equation to the system that models the macroscopic effects of the
capillary forces and describes the difference between the phase pressures.
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1.7. Capillarity

1.7.1. Microscale Capillarity

On a pore scale, a single phase flow is governed by pressure forces arising from the pressure
gradient within the void space and the exterior gravitational force. The sharp interfaces between
fluid phases in multiphase flows on the microscale give rise to the capillary force. This force
is evoked by surface tension σ [J m−2] of both phases at their interface and called interfacial
tension. The interfacial tension is caused by both molecular coherence within each of the phases
and the adhesion effects between the phases and the solid matrix.

ω

solid matrix oil water

ω
ω

non-wetting phase

wetting phase

Figure 1.4.: Interface between two phases in detail. The contact angle ω characterizes the meniscus
at the fluid-fluid-solid interface (right figure) and defines the wetting phase (water) and non-
wetting phase (air, oil, . . . ).

Figure 1.4 shows the interface in a pore channel between two solid grains. At the fluid-fluid
interface, the equilibrium of forces leads to a curved form of the interface due to capillarity. Let
us consider two immiscible phases (e.g. water and air). The interaction of the three different
phases, where the third phase is the solid matrix, results in a contact angle ω depicted in
Figure 1.4. The influence of these forces decreases with the distance from the interface.

When the phases are in mechanical equilibrium, the Young’s equation gives the following
expression for the surface tensions at the phase interface :

σS−1 = σS−2 + σ1−2 cosω, (1.17)

where σS−1, σS−2 and σ1−2 are the respective surface tension forces at solid phase–fluid 1
interface, solid phase–fluid 2 interface and fluid 1–fluid 2 interface as shown in Figure 1.5. From
(1.17), the contact angle ω can be explicitly given as

ω = arccos

(
σS−2 − σS−1

σ1−2

)
. (1.18)

The contact angle α allows us to distinguish between the wetting and the non-wetting phases.
The fluid phase with an acute contact angle is referred to as the wetting phase with respect
to the solid matrix and the other fluid (fluid 1 in Figure 1.5), while the fluid phase with an
obtuse contact angle is the non-wetting phase (fluid 2 in Figure 1.5). This notation allows us to
develop more general two-phase flow models with a wetting and a non-wetting phase regardless
of the factual nature of the fluid phases, [2]. In the latter, the subscripts w and n are used for
quantities related to the wetting and non-wetting phase, respectively.

The microscopic capillary pressure πc [Pa] is defined as the difference between the non-wetting
phase pressure and the wetting phase pressure at the phase interface,

πc = πn − πw. (1.19)
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ω

σ1−2

σS−1σS−2

fluid 1
(water)

fluid 2
(air, oil, . . . )

solid matrix

Figure 1.5.: Interface tension and wetting angle at equilibrium.

The curved interface between both phases is preserved by a discontinuity in microscopic pressure
of each phase. The capillary pressure is thus the height of the jump and it is always a non-
negative quantity,

πc ≥ 0, (1.20)

because the pressure pn in the non-wetting phase is larger than the pressure pw in the wetting
phase at the interface as a consequence of the definition of wettability.

1.7.2. Macroscale Capillarity: Static Case

In order to be able to describe the differences between the macroscale phase pressures pw and
pn given in (1.16), we need to upscale capillary pressure (1.19). The natural way is to introduce
the macroscopic capillary pressure pc by the same definition as (1.19)

pc = pn − pw, (1.21)

where pw and pn are the macroscopic phase pressures that can be either averaged from the
microscale pressures πα, see [2] or [57], or defined by thermodynamic constitutive relationships
as in [56]. The macroscopic capillary pressure is a function of state variables such as the phase
saturations, temperature, and interfacial areas between fluids or a fluid and the solid matrix, [56].

By peqc , we denote the capillary pressure–saturation relationship determined under the static
conditions, i.e., in the state of thermodynamic equilibrium. Such static capillary pressure–
saturation relationship is obtained by measuring the phase pressures difference during slow
drainage or imbibition laboratory experiments. Traditionally, they are used in the modelling of
a multi-phase flow independently of the flow conditions as long as the hysteretic effects can be
neglected.

In this thesis, we assume that the static capillary pressure function peqc has the following
mathematical properties, [60]:

1. peqc = peqc (Sw),

2. peqc is continuously differentiable in (0, 1),

3. peqc is strictly decreasing with respect to Sw,

4. peqc → pd ≥ 0 as Sw → 1− Sr,n,

where pd [Pa] is the entry pressure. The entry pressure pd is the capillary pressure at full
saturation and is considered as the minimal capillary pressure required to displace the wetting
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1.7. Capillarity

phase at its maximal saturation from the largest occurring pore. Among others, the following
two static capillary pressure–saturation models satisfying these conditions are commonly used.

Brooks and Corey [10] developed a mathematical model for peqc ↔ Sw in the form

Se,w(peqc ) =

(
peqc
pd

)λ
for peqc ≥ pd, (1.22)

where the parameter λ [−] describes pore distribution of the grains in a porous material. Small
values of λ belong to single grain size material, while large values indicate a highly non-uniform
material, [57]. This parametrization of the peqc ↔ Sw relation simulates the DNAPL pooling (or
physical barrier effect) described later in Section 1.9. From (1.22), the static capillary pressure
peqc can be expressed as

peqc (Sw) = pdS
− 1
λ

e,w for Se,w ∈ (0, 1]. (1.23)

Another model, developed by van Genuchten [48], treats the capillary pressure–saturation
relationship as

Se,w(peqc ) = [1 + (αpeqc )n]m for peqc ≥ 0. (1.24)

Usually, the parameters m and n are coupled as

m = 1− 1

n
, (1.25)

and they characterize the pore structure of the porous medium. The last parameter α is given
in [Pa−1]. It follows from (1.24) that the expression for peqc (Sw) reads as

peqc (Sw) =
1

α

(
S
− 1
m

e,w − 1

) 1
n

for Se,w ∈ (0, 1]. (1.26)

Unlike the Brooks-Corey capillary pressure (1.23), the van Genuchten model (1.26) is unable to
model the barrier effect, because pc = 0 at full water saturation.

1.7.3. Macroscale Capillarity: Dynamic Case

In 1978, Stauffer [110] published an experimentally supported theory that the relationship

peqc = pn − pw (1.27)

holds only if the system is in equilibrium. Therefore, it is of great concern whether the classical
models such as Brooks and Corey (1.23) or van Genuchten (1.26) can be used in (1.21) when
the system is not in equilibrium. The following modification to the phase pressure difference
equation is proposed by Stauffer

pn − pw = peqc − τ
∂Sw
∂t

, (1.28)

where τ [kg m−1 s−1] is the dynamic capillary pressure coefficient. Equation (1.28) is referred
to as the dynamic effect in the capillary pressure–saturation relationship, or, for the sake of
brevity, the dynamic capillary pressure, [78].

Decades later, a thermodynamic basis of the capillary pressure was derived by Hassanizadeh
and Gray in a series of papers [49], [50], [51], [53], [55], and [56]. They show that the macroscopic
capillary pressure pc is solely an intrinsic property of the system and that (1.28) is a result of
the Coleman and Noll method of exploitation of the Second Law of Thermodynamics, [56], [79].
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1. Modelling Immiscible Fluid Flow in Porous Medium

Consequently, we use the ansatz (1.28) as the constitutive relationship for the macroscopic
capillary pressure defined by (1.21)

pc = peqc − τ
∂Sw
∂t

. (1.29)

Stauffer [110] proposed the following model for the dynamic effect coefficient (denoted here
by τS)

τS =
αSµwφ

Kλ

(
pd
ρwg

)2

, (1.30)

where αS = 0.1 [−] denotes a scaling parameter and g [m s−2] is the gravitational acceleration.
Both λ and pd are the Brooks and Corey parameters from (1.23).

The Stauffer model for the dynamic effect coefficient τS was obtained by correlating experimen-
tal data. The values of τS vary between τS = 2.7 ·104 Pa·s and τS = 7.7 · 104 Pa·s [77, page 27].
In case of the sands used in this work (cf. Table B.2), (1.30) gives higher values of τS than for
the sands used by Stauffer. Other researchers suggest that the magnitude of τ should be smaller,
i.e., in the order of 102 − 103 Pa·s according to [22], or, on the other hand, it should be higher,
i.e., in the order of 104 − 108 Pa·s as estimated by [54]. Furthermore, the dynamic coefficient
may depend on averaging scales as well as saturation, see [94], [95]. As the influence of the
averaging scales was not found to be important in [106], we do not consider this dependence
here.

1.7.4. Capillary Hysteresis

The relationship between capillary pressure and saturation depends on a type of the displacement
process (i.e., imbibition or drainage) as it is subject to capillary hysteresis. In general, the
capillary pressure depends on the complete history of drainage and imbibition cycles whereas
it is always bounded by the primary drainage and primary wetting curves, [20], [57], [85], [86].
These curves are shown in Figure 1.6. The red curves are valid for the primary drainage of
a fully water saturated medium and the blue curves correspond to the case, where the porous
medium is subsequently imbibed (wetted) to the maximal water saturation.

The capillary hysteresis can be significantly observed in the ink bottle effect when a capillary
tube of axial symmetry having periodical variations in radius has its lower end immersed in
water (air-water system), the water will rise through the tube until the hydrostatic pressure in
the tube equilibrates to the capillary pressure. Then, if the tube is raised in the water, some
water will drain out and a new equilibrium level will establish. When the interface meniscus is
advancing and approaches the narrow part of the tube, it jumps through the neck (imbibition).
When receding, it halts without passing through the neck. This phenomenon explains why
a given capillary pressure corresponds to a higher saturation on the drainage curve than on the
imbibition curve in Figure 1.6.

In most fluid-flow problems of practical interest, the capillary hysteresis can be neglected
because the flow regime usually dictates that one or the other capillary pressure–saturation
curve will apply. A general theoretical description of the capillary hysteresis model was proposed
in a series of papers [72], [73], [96]. In [99] Philip derived similarity solutions for a horizontal
redistribution problem which was later addressed in [100] that included fluid-fluid and fluid-
solid interfacial areas in the model of capillary hysteresis. According to [6], [7], and [52], it
is possible to develop a mathematical model that can treat both the capillary hysteresis and
the dynamic effect in the capillarity more accurately than (1.29). However, such mathematical
model requires additional experimental data and is subject to further investigation. Therefore,
we do not consider capillary hysteresis in this thesis.
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Figure 1.6.: Typical capillary pressure curves pc(Sw) after (a) Brooks-Corey and after (b) van
Genuchten for both drainage and imbibition (wetting) cycles.

1.8. Relative Permeability

The relative permeability kr,α defined by (1.14) models the fact that the flow paths of a fluid
are hindered by the presence of other phases. It can be considered as a scaling factor that obeys
the constraint

0 ≤ kr,α ≤ 1. (1.31)
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Figure 1.7.: Relative permeability functions based on imbibition and drainage capillary curves.

For the two-phase flow in porous media, the mathematical models for the relative permeability
functions kr,w and kr,n can be deduced from the models of the capillarity by the relations
(see [57]):

kr,w(Sw) = SAe,w




Se,w∫
0

[peqc (v)]−Bdv

1∫
0

[peqc (v)]−Bdv




C

, (1.32a)

kr,n(Sw) = (1− Se,w)A




Se,w∫
0

[peqc (v)]−Bdv

1∫
0

[peqc (v)]−Bdv




C

, (1.32b)
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1. Modelling Immiscible Fluid Flow in Porous Medium

where only the static capillary pressure function peqc is used. Simulations by pore-network models
[68], [92], have shown that the dynamics of the system affects negligibly the relative permeability
functions. Therefore, we assume that the relative permeabilities depend on saturations only. The
following two classical models are presented in [57].

The Burdine mathematical model for the relative permeability functions [12], [13] can be
obtained by substituting the Brooks and Corey static capillary pressure function peqc defined by
(1.23) into (1.32) with A = B = 2 and C = 1,

kr,w(Sw) = S
3+ 2

λ
e,w , (1.33a)

kr,n(Sw) = (1− Se,w)2(1− S1+ 2
λ

e,w ). (1.33b)

It is common to refer to (1.33) in conjunction with (1.23) as the Brooks and Corey model.

The Mualem mathematical model for relative permeability functions [87] can obtained by
substituting the van Genuchten capillary pressure model (1.26) into (1.32) with A = 1

2 , B = 1,
and C = 2,

kr,w(Sw) = S
1
2
e,w

(
1− (1− S

1
m
e,w)m

)2

, (1.34a)

kr,n(Sw) = (1− Se,w)
1
3 (1− S

1
m
e,w)2m. (1.34b)

Equations (1.34) and (1.26) are usually referred to as the van Genuchten model.

1.9. Fluid Behavior at Material Interfaces

In this section, we describe the behavior of two fluids at a sharp material interface between
materials with different capillary pressure–saturation curves. We extend the approach of [90] to
the case of the dynamic capillary pressure–saturation relationship. A similar approach can be
found in [60] where the authors present a variational formulation of the interfacial conditions.

Let us consider an initially fully water saturated column with two sands separated by a sharp
interface. The situation at the interface is illustrated in Figure 1.8. Since no mass is lost or
produced at the material interface, the mass conservation law states that the normal component
of the mass flux

%α uα · n is continuous across the interface, (1.35)

where n denotes a unit normal to the interface as illustrated in Figure 1.8.

n

Domain Ω

material
interface

Subdomain ΩI :

KI ΦI

kIr,w kIr,n pIc

Subdomain ΩII :

KII ΦII

kIIr,w kIIr,n pIIc

Figure 1.8.: The sharp interface between two different porous media.
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Figure 1.9.: The typical Brooks and Corey (a) and van Genuchten (b) capillary pressure curves
for two different sands and the saturations at a material interface.

As in [90], we assume that a mobile wetting phase is present on both sides of the interface
which implies the following continuity condition for pw:

pw is continuous across the interface, (1.36)

If a non-wetting phase is present on both sides of the interface, pn is also assumed to be conti-
nuous which implies the continuity of the capillary pressure pc in that case. On the other hand,
if the non-wetting phase is not present but approaches the material interface, the following si-
tuation can occur. As the non-wetting phase reaches the material interface from the coarse sand
(denoted by the superscript I), the interfacial capillary pressure pIc increases. When pIc is lower
than the entry pressure pIId of the finer medium, the non-wetting phase cannot penetrate the
interface and accumulates (pools) at the interface. This is referred to as the barrier effect. Once
the capillary pressure pIc exceeds the entry pressure threshold pIId , the non-wetting phase enters
the finer sand. In Figure 1.9, typical van Genuchten (a) and Brooks and Corey (b) capillary
pressure curves (1.26) and (1.23) for two different porous media are shown. Note that the bar-
rier effect is simulated by the Brooks and Corey model only since the van Genuchten capillary
pressure–saturation relationship gives pc = 0 at full water saturation.

Altogether, the condition at the material interface is established in the following form:

SIIn = 0 and pIIc = pIId , if pIc < pIId ,
pIc = pIIc , otherwise.

(1.37)

Eq. (1.37) is referred to as the extended capillary pressure condition [30], [90]. In the case of
static capillary pressure, a unique value of the wetting phase saturation SI,∗w can be associated
with the threshold value of the capillary pressure for the static model such that

SI,∗w = (pIc)
−1(pIId ), (1.38)

see Figure 1.9.

We assume that the condition (1.37) holds also for the dynamic capillary pressure in the form

SIIn = 0 and pIIc = pIId , if pIc < pIId ,

peq,Ic − τ I ∂SIw∂t = peq,IIc − τ II ∂SIIw∂t , otherwise.
(1.39)

17



1. Modelling Immiscible Fluid Flow in Porous Medium

In contrast to the static capillary pressure model, the threshold saturation cannot be uniquely
associated with the entry pressure of the finer sand as in (1.38) because the value of the dynamic
capillary pressure depends on the dynamics of the system through the time derivative of the
saturation. Consequently, the required entry pressure threshold pd can be reached for higher
values of SIw than in the static case.

1.10. Problem Formulations

We consider flow of two immiscible and incompressible fluids in a polygonal domain Ω in Rd
(with d = 1 or 2). We assume that the phase densities %α are constant and the porosity is
constant in time, i.e., the solid matrix of the porous medium is rigid.

1.10.1. Pressure–Saturation Formulation

In this subsection, we devise a formulation of two-phase immiscible and incompressible flow on
the macroscale. We rewrite all the relevant equations presented in the previous sections (1.10),
(1.12), (1.13), and (1.28) as:

φ
∂Sw
∂t

+∇·uw = Fw, (1.40a)

φ
∂Sn
∂t

+∇·un = Fn, (1.40b)

uw = −λwK (∇pw − ρwg) , (1.40c)

un = −λnK (∇pn − ρng) , (1.40d)

pc = peqc − τ
∂Sw
∂t

= pn − pw, (1.40e)

Sw + Sn = 1, (1.40f)

where the unknown functions are the saturations Sα = Sα(t,x) and the phase pressures
pα = pα(t,x) for all t > 0 and x inside Ω, α ∈ {w, n}.

The governing equations (1.40) are subject to an initial condition

Sα = Siniα , in Ω, α ∈ {w, n}, (1.41)

and boundary conditions

uα · n = uNα on Γuα ⊂ ∂Ω, (1.42a)

Sw = SDw on ΓSw ⊂ ∂Ω, (1.42b)

pα = pDα on Γpα ⊂ ∂Ω, (1.42c)

where n denotes the outward unit normal to the boundary ∂Ω with respect to Ω and α ∈ {n,w}.
The superscripts N and D stand for the Neumann and Dirichlet type boundary condition,
respectively. Initial condition (1.41) and boundary conditions (1.42) should be consistent with
(1.40e) and (1.40f).

In the case of flow of a gas phase in an unsaturated porous medium, the mathematical for-
mulation (1.40) can be reduced into a single equation under the assumption that the changes
in pressure of the gaseous phase are negligible throughout the domain Ω. Assuming pn to be at
a constant (atmospheric) pressure, the gradient of the wetting-phase pressure pw can be directly
expressed as

∇pw = ∇pn︸︷︷︸
0

−∇pc = −∇pc. (1.43)
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Combining the Darcy law (1.40c) and the continuity theorem (1.40a) for the wetting-phase, we
obtain

φ
∂Sw
∂t
−∇·(λwK (−∇pc − ρwg)) = Fw, (1.44)

where pc is given by (1.40e). Equation (1.44) is a single equation for the wetting-phase saturation
Sw and is referred to as the Richards equation [102].

1.10.2. Flow Potential–Saturation Formulation

Since we assume that both fluids are incompressible, we can simplify the notation of the gover-
ning equations (1.40) by introducing the flow potential ψα as

ψα = pα − %α g·x, (1.45)

where x is the position vector and α ∈ {w, n}. Similarly to the definition of the capillary pressure
(1.21), we define the capillary potential as

ψc = ψn − ψw. (1.46)

Using (1.45) and the expressions for the macroscale capillary pressure pc (1.21) and (1.29), we
obtain

ψc = pn − pw − (ρn − ρw)g·x (1.47a)

= pc − (ρn − ρw)g·x (1.47b)

= peqc − τ
∂Sw
∂t
− (ρn − ρw)g·x (1.47c)

= ψeqc − τ
∂Sw
∂t

, (1.47d)

where ψeqc stands for the static capillary potential,

ψeqc = peqc − (%n − %w)g·x. (1.48)

Consequently, the system of equations (1.40) can be rewritten in the following form

φ
∂Sw
∂t

+∇·uw = Fw, (1.49a)

φ
∂Sn
∂t

+∇·un = Fn, (1.49b)

uw = −λwK∇ψw, (1.49c)

un = −λnK∇ψn, (1.49d)

ψc = ψeqc − τ
∂Sw
∂t

= ψn − ψw, (1.49e)

Sw + Sn = 1, (1.49f)

where the unknown functions are the saturations Sα = Sα(t,x) and the phase potentials
ψα = ψα(t,x) for all t > 0 and x inside Ω, α ∈ {w, n}.

The governing equations (1.49) are subject to an initial condition

Sα = Siniα , in Ω, (1.50)

and boundary conditions

uα · n = uNα on Γuα ⊂ ∂Ω, (1.51a)

Sw = SDw on ΓSw ⊂ ∂Ω, (1.51b)

ψα = ψDα on Γψα ⊂ ∂Ω, (1.51c)
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1. Modelling Immiscible Fluid Flow in Porous Medium

for α ∈ {w, n}. Initial condition (1.50) and boundary conditions (1.51) should be consistent
with (1.49e) and (1.49f).
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CHAPTER 2

BENCHMARK SOLUTIONS

I
n this chapter, we review the currently available analytical and semi-analytical solutions
(i.e., the benchmark solutions) that can be obtained if several assumptions are placed upon
the problem formulation (1.40). These benchmark solutions can be derived for a one-

dimensional two-phase flow problem without sources or sinks (Fw = Fn = 0) and with zero
gravity (g = 0). As we show in Section 2.1, the set of equations (1.40) can be reduced into
a single evolution equation for the wetting phase saturation Sw = Sw(t, x) in the form

φ
∂Sw
∂t

= −uT
∂fw
∂x︸ ︷︷ ︸

advection term

+
∂

∂x

[
D
∂Sw
∂x

]

︸ ︷︷ ︸
static capillary
pressure term

+
∂

∂x

[
λwλn
λw + λn

K
∂

∂x

(
τ
∂Sw
∂t

)]

︸ ︷︷ ︸
dynamic effect term

. (2.1)

In the latter, we divide the benchmark solutions based upon a combination of the three terms
(advection, static capillary pressure, and dynamic effect) that are present in (2.1). In Section 2.2,
we present the Buckley and Leverett analytical solution for the pure advection version of (2.1)
with D = 0 and τ = 0. Then, in Sections 2.3 and 2.4, we discuss semi-analytical solutions for
an advection–diffusion equation in homogeneous and layered porous media, respectively, with
D 6= 0 and τ = 0 in (2.1).

According to [1], [34], [88], or [109], equation (2.1) belongs to the family of Sobolev equations
when τ 6= 0. In these papers, the existence and uniqueness of a solution is shown under several
restrictions placed upon the coefficients of (2.1). To the best of our knowledge, there is no
benchmark solution available for the case of partial differential equation (2.1) with the advection,
diffusion, and dynamic effect terms when coefficients are highly nonlinear as is the case for the
Brooks and Corey or van Genuchten models.

Based on [21] and [31], a semi-analytical solution can be obtained for a simplified (linearized)
equation (2.1) as an extension of the Buckley and Leverett solution. However, we are currently
unaware of how these semi-analytical solutions can be extended for the case of highly non-linear
coefficients that are considered in this thesis in (2.1).

2.1. One-Dimensional Saturation Equation

In this section, we derive the one-dimensional benchmark equation (2.1) from the phase
pressures–saturations formulation (1.40) given in Section 1.10.1 with Fw = Fn = 0 and g = 0.

21



2. Benchmark Solutions

We sum equations (1.40a) and (1.40b) and by using (1.40f), we obtain

∂

∂x
(uw + un) = 0. (2.2)

Defining the total velocity uT as

uT = uw + un, (2.3)

equation (2.2) implies that uT is constant in space. Thus, we establish an equation for the
wetting phase pressure pw = pw(t, x) by substituting (1.40c) and (1.40d) into (2.3) as

− (λw + λn)︸ ︷︷ ︸
λt

K
∂pw
∂x
− λnK

∂pc
∂x

= uT , (2.4)

where λt = λw + λn denotes the total mobility function. By the definition of the relative
permeabilities kr,w and kr,n (see Figure 1.7), λt(Sw) is positive for all wetting-phase saturations
Sw (see Figure 1.7). We express the gradient of pw as

∂pw
∂x

= −λn
λt

∂pc
∂x
− λ−1

t K−1uT . (2.5)

We use (2.5) to eliminate pw from the Darcy velocity (1.40c) to obtain

uw = λwK
∂pw
∂x

=
λw
λt
uT −

λwλn
λt

K
∂pc
∂x

. (2.6)

Next, we combine (2.6) and the continuity equation (1.40a),

φ
∂Sw
∂t

= −uT
∂

∂x

(
λw
λt

)
− ∂

∂x

(
λwλn
λt

K
∂pc
∂x

)
. (2.7)

In (2.7) we expand the gradient of pc using the dynamic effect in capillary pressure–saturation
relationship (1.40e) as follows

∂pc
∂x

=
∂

∂x

(
peqc (Sw)− τ(Sw)

∂Sw
∂t

)
, (2.8a)

=
dpeqc (Sw)

dSw

∂Sw
∂x
− ∂

∂x

(
τ(Sw)

∂Sw
∂t

)
. (2.8b)

For convenience, we introduce the fractional flow function fα of the α-phase as

fα =
λα
λt
, α ∈ {w, n}, (2.9)

and the function D as

D = − λwλn
λw + λn

K
dpeqc
dSw

. (2.10)

Note that the fractional flow functions have the following properties

0 ≤fα ≤ 1, (2.11a)

fα = 1, if Sα = 1, (2.11b)

fα = 0, if Sα = 0, (2.11c)

fw + fn = 1, (2.11d)
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2.2. Pure Advection Case

where α ∈ {w, n}. Using this notation, equation (2.7) reads as

φ
∂Sw
∂t

= −uT
∂fw
∂x

+
∂

∂x

[
D
∂Sw
∂x

]
+

∂

∂x

[
λwλn
λw + λn

K
∂

∂x

(
τ
∂Sw
∂t

)]
. (2.12)

Since all of the coefficients are either constant or depend on Sw only, equation (2.12) is a nonlinear
partial differential equation for Sw. Typical shapes of functions fw andD are shown in Figure 2.1.
Once Sw is known, the wetting-phase pressure can be easily obtained from (2.5) in the form

∂pw
∂x

= −fn
dpeqc
dSw

∂Sw
∂x

+ fn
∂

∂x

(
τ
∂Sw
∂t

)
− λ−1

t K−1uT . (2.13)

We shall discuss only the equation (2.1) for the wetting-phase saturation Sw since we consider
pw as a saturation-dependent variable due to (2.13).

In the following sections, we consider benchmark solutions for (2.12) in a space–time domain
Ω× (0, T ) for initial and boundary conditions illustrated in Figure 2.2.
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Figure 2.2.: Benchmark problems setup.

2.2. Pure Advection Case

Neglecting the capillarity and the dynamic effect term in (2.1), we get a pure advection equation
in a homogeneous porous medium domain Ω = (0,+∞)

φ
∂Sw
∂t

= −uT
∂fw
∂x

(2.14)
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for which we set-up the following Riemann problem. The equation (2.14) is strictly hyperbolic
and thus we prescribe a boundary condition for Sw at the inflow boundary. Let us assume that
the inflow boundary is placed at x = 0, i.e., Sw(t, 0) = S0. The total velocity uT is either
prescribed or implied by the boundary condition (1.42a) and we assume that uT = uT (t) is an
integrable non-negative function. Initially, the domain Ω is filled with constant wetting phase
saturation Sw(0, x) = Si with Si < S0 as shown in Figure 2.2a. In the following subsections, we
shall describe the derivation of the analytical solution for the case S0 > Si only. In order to
obtain the analytical solution for the other case S0 < Si, we use (1.40f) and (2.11d) and rewrite
(2.14) in terms of the non-wetting phase saturation as

φ
∂Sn
∂t

= −uT
∂fn
∂x

. (2.15)

The initial and boundary conditions of the Riemann problem read in terms of the non-wetting
phase saturation as Sw(0, x) = 1 − Si and Sn(t, 0) = 1 − S0, whilst the total velocity remains
unchanged. Therefore, denoting by S̃i = 1 − Si and S̃0 = 1 − S0, we get S̃i < S̃0 which is
formally the same Riemann problem as in the previous case.

2.2.1. Method of Characteristics

The analytical solution of (2.14) can be derived using the modified method of characteristics for
non-convex flux functions and is referred to as the Buckley and Leverett solution. A modification
of the method of characteristics is necessary due to the existence of an inflexion point of the
function fw as depicted in Figure 2.3. The Buckley and Leverett analytical solution is very well
understood in the literature, c.f. [2], [11], [19], [42], [66], [74]. Therefore, we only recapitulate
the most important aspects of its construction.

We use the chain rule to expand the right-hand-side of (2.14) as

φ
∂Sw
∂t

= −uT
dfw(Sw)

dSw

∂Sw
∂x

. (2.16)

A characteristic is a curve in the (t, x)-plane, along which the solution Sw(t, x) of the Riemann
problem (2.14) is constant. We consider a parametrization η 7→ (t, x) of such curve and we
assume differentiability of x = x(η) and t = t(η) for all η. Since Sw is constant along the
characteristics,

Sw(η) = Sw (t(η), x(η)) = const. (2.17)

We differentiate (2.17) with respect to η as follows

dSw
dη

=
∂Sw
∂t

dt

dη
+
∂Sw
∂x

dx

dη
= 0. (2.18)

Comparing (2.18) and (2.16), we obtain

dt

dη
= φ, (2.19a)

dx

dη
=

dfw(Sw)

dSw
uT . (2.19b)

Combining (2.19a) and (2.19b), we get

dx

dt
=

1

φ

dfw(Sw)

dSw
uT . (2.20)
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By integrating (2.20) from 0 to t, a smooth rarefaction wave is obtained for convex functions fw
in the implicit form

x(t, Sw) =
1

φ

dfw
dSw

(Sw)

t∫

0

uT (z)dz. (2.21)

The convexity or concavity of fw implies that its first derivative is a monotonous function and
thus (2.21) can be inverted to obtain the solution Sw(t, x). Due to the existence of the inflexion
point of fw shown in Figure 2.3, this is not the case in the Buckley and Leverett problem and
only a weak solution exists which involves both shock (due to convexity of fw) and rarefaction
(due to concavity of fw) waves. In order to determine the weak solution to the non-convex scalar
conservation law, we consider the Oleinik entropy condition in Theorem 2.1, [74].

Theorem 2.1 (Entropy condition (Oleinik)). A weak solution Sw(t, x) is the vanishing-viscosity
solution to a general scalar conservation law (2.14), if all discontinuities have the property that

fw(Sw)− fw(S0)

Sw − S0
≥ s ≥ fw(Sw)− fw(Si)

Sw − Si
, (2.22)

for all Si ≤ Sw ≤ S0, where

s =
fw(S∗)− f(S0)

S∗ − S0
(2.23)

is the (fractional) shock speed and S∗ is the postshock value that is constant in time defined by
the relationship

fw(S∗)− f(Si) =
dfw
dSw

(S∗)(S∗ − Si). (2.24)

The term fractional shock speed is used because the shock speed ushock is for all t > 0 defined
as

ushock(t) = s uT (t). (2.25)

If the function fw has no inflexion, then S∗ = Si and the shock speed ushock(t) is given by the
Rankine-Hugoniot condition [74]

uRH =
fw(S0)− fw(Si)

S0 − Si
uT (t). (2.26)

2.2.2. Entropy Condition : Convex Hull Construction

The entropy-satisfying solution to the Riemann problem (2.14) can be determined by construct-
ing the convex hull of the set

S = {(Sw, y) : Si ≤ Sw ≤ S0, y ≤ fw(Sw)} . (2.27)

As shown in Figure 2.3, the convex hull of a set is the smallest convex set that contains the
original set. The upper boundary of the convex hull is composed of a tangential from a point
[Si, f(Si)] to the graph at a point [S∗, f(S∗)]. The value S∗ is exactly the postshock value defined
by (2.24). The straight part of the upper boundary represents a shock jumping from Sw = Si
to Sw = S∗, while the rest of the upper boundary that follows the graph fw(Sw) corresponds to
the rarefaction wave. Moreover, the slope of the straight segment equals to the fractional shock
speed s defined in Theorem 2.1.

If fw is convex, then the convex hull construction gives a single line segment (single shock)
and if fw is concave, the convex hull coincides with S (single rarefaction).
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Figure 2.4.: Illustration of the Buckley and Leverett analytical solution, model Brooks and Corey,
Si = 0.1, (a) S0 = 0.8, and (b) S0 = 0.5. If (a) S0 > S∗, the solution of the Riemann problem
contains a rarefaction wave and a shockwave, while the solution consists of a single shockwave if
(b) S0 < S∗.

2.2.3. Analytical Solution

In this subsection, we finalize the derivation of the analytical solution. Let the value of S∗ be
computed from the equation (2.24). If S∗ < S0, the solution of the Riemann problem (2.14)
contains a shockwave as well as a rarefaction wave, see Figure 2.4a. If S∗ > S0, there is only
a shockwave with the Rankine-Hugoniot shock speed uRH(t) and the shock front position xRH(t)
can be expressed as

xRH(t) =
1

Φ

f(S0)− f(Si)

S0 − Si

t∫

0

uT (z)dz. (2.28)

Hence, the Buckley and Leverett analytical solution is given by the following implicit formula:




If S0 ≥ S∗ :





Sw(t, x) is solution of x = x(t, Sw), if S∗ ≤ Sw ≤ S0,
Sw(t, x) = S0 for x ≤ x(t, S0),
Sw(t, x) = Si for x ≤ x(t, S∗),

If S0 < S∗ :

{
Sw(t, x) = S0 for x ≤ xRH(t),
Sw(t, x) = Si for x ≤ xRH(t).

(2.29)

The Buckley and Leverett analytical solution is illustrated in Figure 2.5.
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Figure 2.5.: Example of the Buckley and Leverett analytical solution for S0 = 0.735,
uT (t) = 10−4 ms−1, and Si = 0. We used Sand A whose parameters are given in Table B.2
(page 122).

2.3. Advection and Diffusion Case in Homogeneous Medium

In this subsection, we consider static capillary pressure pc = peqc and homogeneous porous
medium in Ω = (0,+∞). We can include both pure diffusion (uT = 0, D 6= 0, and τ = 0) and
advection–diffusion (uT 6= 0, D 6= 0, and τ = 0) cases into a family of semi-analytical (self-
similar) closed-form solutions that can be derived for (2.1). Here, a special inflow boundary
velocity uw is assumed as

uw(t, 0) = u0(t) = At−
1
2 . (2.30)

As a consequence of (2.2), we assume the total velocity in the form

uT (t) = Ru0(t) = RAt−
1
2 , (2.31)

where R ∈ (−∞, 1] indicates the semi–permeability of the boundary at x = +∞, see [45].
Therefore, we consider the equation (2.1) in the following form

φ
∂Sw
∂t

= −RAt− 1
2
∂fw
∂x

+
∂

∂x

[
D
∂Sw
∂x

]
(2.32)

with a constant initial saturation Sw(0, x) = Si in Ω and boundary conditions

Sw(t, 0) = S0, (2.33a)

Sw(t,+∞) = Si, (2.33b)

for t ∈ (0, T ).

If R = 1, the boundary at x = +∞ is fully permeable such that uw(t,+∞) = u0(t) for
all t ∈ (0, T ). The case R = 0 indicates impermeable boundary at x = +∞ causing
un(t,+∞) = uw(t,+∞) = 0, uw(t, 0) = −u0(t), and, therefore, uT (t) = 0 for all t ∈ (0, T )
(pure diffusion, or counter-current flow case). Originally, only these two values of R were con-
sidered by McWhorter and Sunada for this type of problem, when they derived a semi-analytical
solution in [80] (see also [18] and [81]). We studied multiple functional choices of the total veloc-
ity u0 = u0(t) and the parameter R in [8], [9], [43], [47]. In [41] and [44] we showed that the range
for R can be extended between 0 and 1. Finally, for the sake of derivation of the semi-analytical
solution in heterogeneous porous medium, we extended R ∈ (−∞, 1] in [45], [46], and [42]. The
negative values of R correspond to a situation, where the wetting phase is injected at x = +∞
with velocities uw(t,+∞) = Ru0(t) and un(t,+∞) = 0.
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2. Benchmark Solutions

As in the case of the pure advection Riemann problem (2.14), we distinguish between cases
S0 > Si and S0 < Si. If S0 > Si, the wetting-phase boundary velocity (2.30) is positive, i.e.
A > 0 and the wetting-phase saturation, initially at Si, will increase in time. In the opposite
case, i.e., if S0 < Si, the wetting-phase velocity at the inlet u0 is negative, i.e. A < 0, which
implies that the total velocity uT is also negative. Using (1.40f) and (2.11d), we rewrite (2.32)
in terms of the non-wetting phase saturation Sn as

φ
∂Sn
∂t

= −RAt− 1
2
∂fn
∂x

+
∂

∂x

[
D
∂Sn
∂x

]
, (2.34)

and the initial and boundary conditions are given as

Sn(t, 0) = 1− S0 =: S̃0, for t > 0, (2.35a)

Sn(0, x) = 1− Si =: S̃i, for x > 0, (2.35b)

where S̃0 > S̃i. Equation (2.34) with the conditions (2.35) is formally the same as in the
previous case. Therefore, without loss of generality, we derive the semi-analytical solution for
the equation (2.32) and the case S0 > Si only.

2.3.1. Derivation of Semi-Analytical Solution

In order to derive the McWhorter and Sunada closed-form solution, we introduce a function
F = F (Sw) as

F = fnormw − D

At−
1
2 (1−Rfw(Si))

∂Sw
∂x

, (2.36)

where by fnormw , we denoted the normalized fractional flow function

fnormw = R
fw − fw(Si)

1−Rfw(Si)
. (2.37)

A substitution

λ(Sw(t, x)) = xt−
1
2 , (2.38)

where the relationship λ = λ(Sw) is assumed to be monotonous, allows to express the partial
derivatives of Sw(t, x) in the following form

∂Sw
∂x

=

(
dλ(Sw)

dSw

)−1

t−
1
2 and

∂Sw
∂t

= −1

2

(
dλ(Sw)

dSw

)−1

λ(Sw)t−1. (2.39)

Substituting the partial derivative ∂S/∂x given by (2.39) into (2.36), we obtain

F (Sw) = fnormw (Sw)− D(Sw)

A(1−Rfw(Si))

(
dλ(Sw)

dSw

)−1

, (2.40)

which reveals that F = F (Sw) since variables x and t were eliminated. Equation (2.36) allows
us to rewrite (2.32) in terms of F as

φ
∂Sw
∂t

= −At− 1
2 (1−Rfw(Si))

∂F

∂x
. (2.41)

Using the fact that
∂F

∂x
=

dF

dSw

∂Sw
∂x

, (2.42)
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2.3. Advection and Diffusion Case in Homogeneous Medium

the substitution of (2.39) into (2.41) leads to

− φ1

2

(
dλ(Sw)

dSw

)−1

λ(Sw)t−1 = −At− 1
2 (1−Rfw(Si))

dF (Sw)

dSw

(
dλ(Sw)

dSw

)−1

t−
1
2 , (2.43)

from which the solution of (2.32) is obtained in the inverted form

2A(1−Rfw(Si))

Φ

dF

dSw
(Sw(t, x)) = xt−

1
2 = λ, (2.44)

for all values of Sw ∈ [Si, S0].

To obtain equation for the unknown function F , we differentiate (2.44) with respect to Sw

d2F

dS2
w

=
φ

2A(1−Rfw(Si))

dλ

dSw
, (2.45)

where we substitute for dλ/dSw from (2.40) to get the following differential equation for
F = F (Sw)

d2F

dS2
w

= − φ

2A2(1−Rfw(Si))2

D

F − fnormw

. (2.46)

This equation can be integrated twice (see [45]) and using the conditions F (S0) = 1 and
F ′(S0) = 0, which follow from the boundary conditions (2.33a) and (2.33b), respectively, we
obtain

F (Sw) = 1− φ

2A2(1−Rfw(Si))2

S0∫

Sw

z − Sw
F (z)− fnormw (z)

D(z)dz. (2.47)

Taking into account that F (Si) = 0, equation (2.47) yields

A2 =
φ

2(1−Rfw(Si))

S0∫

Si

z − Si
F (z)− fnormw (z)

D(z)dz, (2.48)

which is the integral expression that relates A and the boundary saturation S0.

Finally, we substitute (2.48) into (2.47) and obtain the integral equation for the unknown
function F = F (Sw)

F (Sw) = 1−

S0∫
Sw

z−Sw
F (z)−fnormw (z)D(z)dz

S0∫
Si

z−Si
F (z)−fnormw (z)D(z)dz

. (2.49)

Differentiation of (2.49) with respect to Sw reveals that dF/dSw (used in (2.44)) is obtained
from

dF

dSw
(Sw) =

S0∫
Sw

D(z)
F (z)−fnormw (z)dz

S0∫
Si

z−Si
F (z)−fnormw (z)D(z)dz

. (2.50)
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2.3.2. Solution of Integral Equation

The integral equation (2.49) can be solved numerically [45]. We propose two iteration schemes
suitable for obtaining the solution F = F (Sw) for nearly all ranges of the input parameters S0,
Si, and R. Using the functional transformation

G =
D

F − fnormw

, (2.51)

these iteration schemes read as

Gk+1(Sw) = D(Sw) +Gk(Sw)



fnormw (Sw) +

S0∫
Sw

(v − Sw) Gk(v) dv

S0∫
Si

(v − Si) Gk(v) dv



, (2.52)

which is referred to as Variant A and

Gk+1(Sw) = [D(Sw) +Gk(Sw) fnormw (Sw)]




1−

S0∫
Sw

(v − Sw) Gk(v) dv

S0∫
Si

(v − Si) Gk(v) dv




−1

. (2.53)

which is referred to as Variant B.
When the function G = G(Sw) is obtained using the iteration schemes (2.52) or (2.53), the

solution F = F (Sw) is computed from

F = fnormw +
D

G
, (2.54)

and its derivative dF/dSw from

dF

dSw
(Sw) =

S0∫
Sw

G(z)dz

S0∫
Si

(z − Si)G(z)dz

. (2.55)

Finally, the solution Sw = Sw(t, x) of the equation (2.32) is given implicitly by (2.44).
In Figure 2.7 and 2.6, we show typical shapes of the semi-analytical solutions for multiple

choices of the parameters R and S0, respectively. A more detailed description of the McWhorter
and Sunada solution in the homogeneous medium is given in [45] and [42]. We also provide an
implementation of the semi-analytical solution in [39].

2.4. Advection and Diffusion Case in Heterogeneous Medium

When dealing with a layered porous medium, we need to simulate the conditions at material
interfaces using equation (1.37). In order to verify that the behavior of fluids is simulated
correctly by a numerical method, we need to use a suitable benchmark solution.

In [28] and [29] van Duijn et al. derived a semi-analytical solution for the pure diffusion form
of (2.1) in Ω = R for a porous medium with a single material discontinuity placed at x = 0.
Inspired by their problem formulation, we found that two McWhorter and Sunada problem
formulations for homogeneous media (2.32) in ΩI = (−∞, 0] and ΩII = [0,+∞), respectively,
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Figure 2.6.: Example of the McWhorter and Sunada semi-analytical solution for multiple choices
of S0, ut(0) = A(S0) t−

1
2 ms−1, Si = 0, and (a) R = 0 or (b) R = 0.9. We used Sand A with

parameters given in Table B.2 (page 122).
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Figure 2.7.: Example of the McWhorter and Sunada semi-analytical solution for multiple choices
of R, ut(0) = A(S0) t−

1
2 ms−1, Si = 0, and (a) S0 = 0.5 or (b) S0 = 0.735. We used Sand A with

parameters given in Table B.2 (page 122).

can be combined to find a solution satisfying the continuity of the phase velocities (1.35) and
the extended capillary condition (1.37) for the respective boundary values SI0 and SII0 , [46], [42].
In the following, by superscripts I and II, we shall denote the quantities corresponding to the
McWhorter and Sunada problem formulation in ΩI and ΩII , respectively.

Under this notation, the system of the two-phase flow equations can be given as

φI
∂Sw
∂t

= −RAIt− 1
2
∂f Iw
∂x

+
∂

∂x

[
DI ∂Sw

∂x

]
in ΩI , (2.56a)

φII
∂Sw
∂t

= −RAIIt− 1
2
∂f IIw
∂x

+
∂

∂x

[
DII ∂Sw

∂x

]
in ΩII , (2.56b)

and the initial and boundary conditions described below are given such that the semi-analytical
solution can be obtained in both subdomains, see Figure 2.2b.

For ΩI , we set

Sw(t, 0) = SI0 , for all t > 0, (2.57a)

Sw(t,−∞) = SIi , for all t > 0, (2.57b)

Sw(0, x) = SIi , for all x < 0, (2.57c)
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and for ΩII , we set

Sw(t, 0) = SII0 , for all t > 0, (2.58a)

Sw(t,+∞) = SIIi , for all t > 0, (2.58b)

Sw(0, x) = SIIi , for all x > 0. (2.58c)

In ΩII , the wetting flux is given as

uIIw (t, 0) = AIIt−
1
2 , (2.59)

and using the definition of the ratio R in (2.31), the total flux becomes uT = AIIRt−
1
2 . The

unknown interfacial saturations SI0 and SII0 are determined using the continuity of the fluxes
(1.35) and the continuity of the capillary pressures (1.37) which reads as

pIc(S
I
0) = pIIc (SII0 ). (2.60)

We transform the problem in ΩI to take advantage of the McWhorter and Sunada semi-
analytical solution described in the previous section. This is done by a substitution of x̃ = −x
in ΩI . The transformed wetting-phase velocity ũIw at x̃ = 0 becomes

uIw(t, 0) = AIt−
1
2 . (2.61)

At the interface, the wetting-phase flux is continuous (1.35), which allows to couple of both left
and right subdomain problems together by requiring

AI = −AII . (2.62)

Note that in (2.62) fluxes have opposite signs after the transformation x̃ = −x. The total flux is
constant in space throughout both subdomains and continuous across the interface. The value
of the transformed total flux is

ũT = −uT = −AIIRt− 1
2 = AIRt−

1
2 . (2.63)

Consequently, the same value of the parameter R must be used in both subdomains.
The negative value of the flux in the McWhorter and Sunada formulation corresponds to the

fact that S0 < Si. Thus, to obtain a positive value of A in one subdomain and a negative value
of A in the other (c.f. (2.62)), either

SI0 > SIi , and SII0 < SIIi , (2.64a)

or
SI0 < SIi , and SII0 > SIIi , (2.64b)

must hold.
The existence of the semi-analytical solution for the porous medium with a material disconti-

nuity is equivalent to the existence of saturations SI0 and SII0 such that the continuity condition
(2.62) holds. Both AI and AII are functions of SI0 , R, SIi , and SII0 , R, SIIi , respectively, but the
explicit relationship fulfilling (2.62) is unknown and has to be determined numerically together
with (2.60). If a solution of (2.62) exists, then it is unique due to monotonic relationship between
A and S0 and can be computed using the bisection method (see [45]).

Figure 2.8 shows typical shapes of such semi-analytical solutions for the pure diffusion (R = 0)
and the advection–diffusion cases (R 6= 0). A more detailed description of the semi-analytical
solution including a computational algorithm is presented in [46] and [42]. As in the homogeneous
case, an implementation is available in [38].
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Figure 2.8.: Example of the semi-analytical solution in a heterogeneous porous medium for multiple
choices of R and (a) SIi = 0.265, SIIi = 1 or (b) SIi = 0.9, SIIi = 0.4. As a porous material, we
used Sand A and Sand B with parameters given in Table B.2 and B.3, respectively.
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CHAPTER 3

SIGNIFICANCE OF DYNAMIC EFFECT IN CAPILLARY
PRESSURE

M
athematical prediction of flow of immiscible and incompressible fluids in porous media
requires reliable models of capillary pressure–saturation relationships. In most past
modelling efforts, various capillary pressure–saturation models (such as Brooks and

Corey (1.23) or van Genuchten (1.26)) were developed based on laboratory experiments where
capillary pressure and saturation were measured under equilibrium conditions. As described in
Section 1.7.3, alternative models based on both empirical and theoretical approaches have been
proposed to deal with these dynamic effects associated with the fluid flow [49], [50], [54], [56].

In unsaturated flow modelling, the two-phase flow system is simplified using the Richards
equation (1.44), where the pressure of the non-wetting phase (air) is assumed to be constant
throughout the domain. Using this simplification, in [67] the dynamic effect was not found to
be of importance for a given heterogeneous system that was studied. Other numerical studies
on the dynamic effect in capillary pressure models have been reported in [78], [77], or [97].
However, the implications of using the dynamic capillary pressure models in general two-phase
models (without the assumption of constant non-wetting phase pressure) have not been fully
investigated. In [59] the authors present a semi-implicit numerical scheme based on the upwind
finite volume method, where the material interfaces in heterogeneous system are handled using
the Lagrange multiplier method. In a subsequent paper [60], the idea has been further developed
and the extended capillary pressure condition (1.37) takes the form of a variational inequality.
In all these and other studies such as [14] or [91], only constant dynamic effect coefficient was
assumed. However, experimental data in [104], [105], and [106] suggest that this coefficient
depends on water saturation. We believe that this is critical especially in heterogeneous porous
media.

We focus on the study of the implications of the use of dynamic effect in the capillary pressure–
saturation relationship in modelling of flow of water and air in homogeneous and heterogeneous
porous media described by (1.49) with the respective initial (1.50) and boundary (1.51) con-
ditions. We propose a numerical scheme to model these cases of dynamic flow. Subsequently,
this numerical scheme is verified by comparing with the semi-analytical solutions for the static
capillary pressure developed earlier and presented in [80], [45] for homogeneous cases and [46] for
a layered system. By means of the experimental order of convergence (defined later by (3.36)),
we show that the developed numerical scheme is convergent and can be reliably used for simu-
lating flow in both homogeneous and heterogeneous porous media systems. Various models of
dynamic effects in capillary pressure defined through the empirical dynamic effect coefficient τ
are investigated and compared to the static model of capillary pressure.
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3. Significance of Dynamic Effect in Capillary Pressure

Our primary goal is to simulate the drainage flow regimes in a vertically placed one–
dimensional column filled with either homogeneous or layered porous medium and determine
the importance of the dynamic effect in capillary pressure–saturation relationship. We com-
pare the numerical solutions obtained for various models of the dynamic effect coefficient τ to
those computed using the static (classical) capillary pressure pc = peqc and/or to the laboratory
measured data.

The chapter is organized in the following way. In Section 3.1, we derive the fully implicit
vertex-centered finite volume method for the system of two–phase flow equations (1.49). In
Section 3.2, we verify its reliability using the benchmark solutions presented in Chapter 2. In
Section 3.3, we describe a laboratory experiment of drainage in a homogeneous porous medium
carried out at CESEP and discuss results of our numerical simulations that were performed in
order to reproduce the experimentally measured data. We present a detailed numerical study on
the dynamics of drainage flow regimes in heterogeneous porous media in Section 3.4. Concluding
remarks are summarized in Section 3.5.

3.1. Fully Implicit Vertex-Centered Finite Volume Method in 1D

We use the vertex-centered finite volume method (VCFVM) to obtain a time fully implicit
numerical scheme capable of solving the two–phase flow system of equations (1.49) in a one–
dimensional porous medium. In the following sections, we describe the numerical scheme in de-
tails, focus on the conditions at material interfaces, and summarize how the initial and boundary
conditions are implemented in the numerical scheme.

3.1.1. Numerical Scheme

We shall use the following form of the ψw–Sw formulation (1.49):

φ
∂Sw
∂t

+
∂

∂x
uw − Fw = 0, (3.1a)

−φ∂Sw
∂t

+
∂

∂x
un − Fn = 0, (3.1b)

uw = −λwK
∂

∂x
ψw, (3.1c)

un = −λnK
∂

∂x
(ψw + ψc) , (3.1d)

for all x ∈ Ω = (0, L) and all t ∈ (0, T ), where L [m] denotes the length (or height) of the domain
(or column) and T [s] is the final time of the simulation. Initial and boundary conditions will
be considered later.

Let us consider an ordered set of vertices V = {Vk : k = 1, 2, . . . , N} such that

(∀Vk1 , Vk2 ∈ V)(k1 < k2 ⇒ 0 < Vk1 < Vk2 < L).

We construct a set of dual verticesW = {Wk : k = 0, 1, . . . , N} such that W0 = 0, WN = L, and
for all k = 0, 1, . . . , N , vertex Vk is placed in the center of the finite volume Kk = [Wk,Wk+1],
see Figure 3.1.

We define the distance between successive points from V and W as ∆Vk = |Vk+1 − Vk|1 and
∆Wk = |Wk −Wk−1|1, respectively. For any natural number k, we denote by ξk the mean value
of a quantity or function ξ over a finite volume Kk. Next, as we need to address the values
of a quantity ξ in the middle of two adjacent vertices Vk and Vk+1, we introduce the notation
ξk+ 1

2
= ξ(·,Wk).
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3.1. Fully Implicit Vertex-Centered Finite Volume Method in 1D

Vk−2 Vk−1 Vk Vk+1 Vk+2Wk−1 Wk Wk+1 Wk+2

Sw,k−2
Sw,k−1

SI
w,k

SII
w,k

Sw,k+1
Sw,k+2

Sand I Sand II

Figure 3.1.: Vertex–centered finite volume method applied to a one–dimensional domain.

Finally, we discretize the time interval [0, T ] by a set T ,

T = {0 = t0 < t1 < · · · < tM = T}, (3.2)

and we denote the time increments by ∆ti = ti+1 − ti. By a superscript i, we denote the value
of ξ on a time level t = ti, i.e., ξi = ξ(ti, ·).

Integrating (3.1a) and (3.1b) over a finite volume Kk and a time interval [ti, ti+1], we get

ti+1∫

ti

∫

Kk

φ
∂Sw
∂t

+

ti+1∫

ti

∫

Kk

∂uw
∂x
−

ti+1∫

ti

∫

Kk

Fw = 0, (3.3a)

ti+1∫

ti

∫

Kk

−φ∂Sw
∂t

+

ti+1∫

ti

∫

Kk

∂un
∂x
−

ti+1∫

ti

∫

Kk

Fn = 0. (3.3b)

In (3.3) we assume φ to be constant over Kk so that the finite volume Kk does not contain any
material interfaces. Therefore, the integrals in (3.3) are evaluated as

φk
∆ti

(
Si+1
w,k − Siw,k

)
+

1

∆Wk

(
ui+1
w,k+1/2 − u

i+1
w,k−1/2

)
− F i+1

w,k = 0, (3.4a)

− φk
∆ti

(
Si+1
w,k − Siw,k

)
+

1

∆Wk

(
ui+1
n,k+1/2 − u

i+1
n,k−1/2

)
− F i+1

n,k = 0, (3.4b)

where the integrated source/sink term in (3.1a) and (3.1b) is denoted by

F i+1
α,k =

1

∆Wk∆ti

ti+1∫

ti

∫

Kk

Fn, α ∈ {w, n}. (3.5)

We use the upwind technique [57], [74] to compute the discrete Darcy velocities ui+1
w,k+1/2 and

ui+1
n,k+1/2 in (3.4) as

ui+1
w,k+1/2 = −λupw,i+1

w,k+1/2K
ψi+1
w,k+1 − ψi+1

w,k

∆Vk
, (3.6a)

ui+1
n,k+1/2 = −λupw,i+1

n,k+1/2 K
ψi+1
w,k+1 − ψi+1

w,k + ψi+1
c,k+1 − ψi+1

c,k

∆Vk
, (3.6b)

where λupw,i+1
α,k+1/2 denotes the α-phase mobility taken in the upstream direction with respect to the

gradient of the phase potential ψα, i.e.,

λupw,i+1
w,k+1/2 =

{
λw(Si+1

w,k+1), if (ψi+1
w,k+1 − ψi+1

w,k ) ≥ 0,

λw(Si+1
w,k ), otherwise,

(3.7a)

λupw,i+1
n,k+1/2 =

{
λn(Si+1

w,k+1), if (ψi+1
n,k+1 − ψi+1

n,k + ψi+1
c,k+1 − ψi+1

c,k ) ≥ 0,

λn(Si+1
w,k ), otherwise.

(3.7b)
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3. Significance of Dynamic Effect in Capillary Pressure

The discrete capillary potential ψi+1
c,k reads as

ψi+1
c,k = ψeqc (Si+1

w,k )− τ(Si+1
w,k )

Si+1
w,k − Siw,k

∆ti
. (3.8)

3.1.2. Material Interfaces

At a material interface, the properties of the porous media are discontinuous. By superscripts
L and R, we denote the quantities that correspond to the left (between Wk−1 and Vk) and
right (between Vk and Wk) hand side of the interface, respectively (c.f., Figure 1.5). Since the
normal components of the phase velocities uα are continuous across the interface (1.35), the
integration of the derivative of the velocity in (3.3) gives the same result as in (3.4). However,
the discontinuity in porosity φ and saturation Sw requires to split the integral in the left hand
sides of (3.3a) and (3.3b) into two parts

ti+1∫

ti

∫

Kk

φ
∂Sw
∂t

=

ti+1∫

ti

Vk∫

Wk−1

φL
∂SLw
∂t

+

ti+1∫

ti

Wk∫

Vk

φR
∂SRw
∂t

. (3.9a)

Then, using the same technique as in (3.4), the resulting numerical scheme reads as

φLk
2∆ti

(
SL,i+1
w,k − SL,iw,k

)
+

φRk
2∆ti

(
SR,i+1
w,k − SR,iw,k

)
+

1

∆Wk

(
ui+1
w,k+1/2 − u

i+1
w,k−1/2

)
− F i+1

w,k = 0,

(3.10a)

− φLk
2∆ti

(
SL,i+1
w,k − SL,iw,k

)
− φRk

2∆ti

(
SR,i+1
w,k − SR,iw,k

)
+

1

∆Wk

(
ui+1
n,k+1/2 − u

i+1
n,k−1/2

)
− F i+1

n,k = 0.

(3.10b)

An additional equation that relates SL,i+1
w,k and SR,i+1

w,k in (3.10) is given by the extended capillary

condition (1.39). Assuming without loss of generality that pLd < pRd , equation (1.39) can be
discretized as

SR,i+1
w,k = 1 and pR,i+1

c,k = pRd , (3.11a)

if pLc (SL,i+1
w,k ) < pRd , and

peq,Lc (SL,i+1
w,k )− τL(SL,i+1

w,k )
1

∆ti

(
SL,i+1
w,k − SL,iw,k

)
−

peq,Rc (SR,i+1
w,k ) + τR(SR,i+1

w,k )
1

∆ti

(
SR,i+1
w,k − SR,iw,k

)
= 0,

(3.11b)

otherwise.
Equation (3.11) requires both values of the interfacial saturations SL,iw,k and SR,iw,k from the

previous time level in contrast to the static case (τL = τR = 0), where it suffices to remember
the saturation on the coarser side of the material interface only (i.e., SL,iw,k), since the capillary

pressure function peqc can be easily inverted in (3.11). In the dynamic case, however, the in-
terfacial saturations SL,iw,k and SR,iw,k depend on the saturations on all previous time levels SL,jw,k

and SR,jw,k, j = i− 1, i− 2, . . . , 0, which would significantly increase the computational time with

increasing i. To avoid such a recursion, we remember the values SL,iw,k and SR,iw,k from the previous
time step at both sides of all material interfaces in Ω .
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3.1. Fully Implicit Vertex-Centered Finite Volume Method in 1D

3.1.3. Initial and Boundary Conditions

The numerical scheme (3.4) is supplied by the initial and boundary conditions (1.50) and (1.51),
respectively. The initial condition for the wetting phase saturation is given as

S0
w,k = Siniw (Vk), ∀k. (3.12)

The conditions at boundary points ∂Ω = {W0,WN} are discretized as

uα,0−1/2 = −uNα (W0), if W0 ⊂ Γuα , (3.13a)

uα,N+1/2 = uNα (WN ), if WN ⊂ Γuα , (3.13b)

Sw,1 = SDw (W0), if W0 ⊂ ΓSw , (3.13c)

Sw,N = SDw (WN ), if WN ⊂ ΓSw , (3.13d)

ψw,1 = ψDw (W0), if W0 ⊂ Γψw , (3.13e)

ψw,N = ψDw (WN ), if WN ⊂ Γψw , (3.13f)

where α ∈ {w, n}. If the Neumann boundary velocities are prescribed, we use (3.13a) or (3.13b)
instead of the discrete Darcy velocities (3.6) in (3.4).

3.1.4. Numerical Solution

System of Nonlinear Equations

The system of nonlinear equations (3.4), (3.10), (3.11), and (3.13) can be represented in a vector
form as

G(yi+1) = 0, (3.14)

where G : R2N+q → R2N+q is a vector function and yi+1 is a vector of (2N+q)-unknowns, where
q is the number of material interfaces in Ω. By k1, k2, . . . , kq, we denote indices of the vertices
placed at the material interfaces. The components of the vector yi+1 are for all k = 1, 2, . . . , N
given by

⌈
yi+1

⌉
2k−1

=

{
SL,i+1
w,k if k ∈ {k1, k2, . . . , kq},
Si+1
w,k otherwise,

(3.15a)

⌈
yi+1

⌉
2k

= ψi+1
w,k , (3.15b)

and for all j = 1, 2, . . . , q, by ⌈
yi+1

⌉
2N+j

= SR,i+1
w,kj

. (3.16)

The components of the vector function G in (3.14) read for all k = 1, 2, . . . , N as

⌈
G(yi+1)

⌉
2k−1

=





left hand side of (3.10a), if k ∈ {k1, k2, . . . , kq},
Sw,1 − SDw (W0), if k = 1 and W0 ⊂ ΓSw ,
Sw,N − SDw (WN ), if k = N and WN ⊂ ΓSw ,
left hand side of (3.4a), otherwise,

(3.17a)

⌈
G(yi+1)

⌉
2k

=





left hand side of (3.10b), if k ∈ {k1, k2, . . . , kq},
ψw,1 − ψDw (W0), if k = 1 and W0 ⊂ Γψw ,
ψw,N − ψDw (WN ), if k = N and WN ⊂ Γψw ,
left hand side of (3.4b), otherwise,

(3.17b)

and for all j = 1, 2, . . . , q, as

⌈
G(yi+1)

⌉
2N+j

= left hand side of (3.11b). (3.18)
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3. Significance of Dynamic Effect in Capillary Pressure

Under this notation, the system of nonlinear equations (3.14) has the following structure.
There is always a pair of equations

⌈
G(yi+1)

⌉
2k−1

= 0, (3.19)
⌈
G(yi+1)

⌉
2k

= 0, (3.20)

for all k = 1, 2, . . . , N that couples at most 6 unknowns

⌈
yi+1

⌉
max{2k−3,1} ,

⌈
yi+1

⌉
max{2k−2,1} , (3.21a)

⌈
yi+1

⌉
2k−1

,
⌈
yi+1

⌉
2k
, (3.21b)

⌈
yi+1

⌉
min{2k+1,2N} ,

⌈
yi+1

⌉
min{2k+2,2N} . (3.21c)

In case of a layered porous medium with q material interfaces, the system of nonlinear equation
(3.14) includes q equations at material interfaces (3.11) that depend only on two unknowns⌈
yi+1

⌉
2kj−1

= SL,i+1
w,kj

and
⌈
yi+1

⌉
2N+j

= SR,i+1
w,kj

for j = 1, 2, . . . , q.

Newton–Raphson Method

We use the Newton–Raphson iteration method to solve the nonlinear vector equation (3.14) in
the form

yi+1
`+1 = yi+1

` −
[
G′
(
yi+1
`

)]−1
G(yi+1

` ), (3.22)

where G′ denotes the Jacobi matrix of the vector function G. As a starting vector (` = 0) in
(3.22), we choose

yi+1
0 = yi, (3.23)

where yi is the vector that corresponds to the previous time step ti. Note that when i = 0, we
use the initial condition (3.12) for S0

w,k and we always choose hydrostatic ψ0
w,k as an initial guess

for y1
0.

We rewrite (3.22) in the form

∆yi+1
`+1 = −

[
G′
(
yi+1
`

)]−1
G(yi+1

` ), (3.24)

where

∆yi+1
`+1 = yi+1

`+1 − yi+1
` . (3.25)

It follows from (3.24) that the increment ∆yi+1
`+1 of the vector yi+1

` is the solution of a linear
system of equations

[
G′
(
yi+1
`

)]
∆yi+1

`+1 = −G(yi+1
` ). (3.26)

In each iteration of (3.24), the solution of (3.26) is the most expensive step from the compu-
tational point of view. In order to diminish the required amount of work, we take advantage
of the structure of the system of equations (3.14) introduced by (3.17) and (3.21) and solve the
linear system (3.26) in the following way. We represent (3.26) as

(
G′11 G′12

G′21 G′22

)(
z1

z2

)
=

(
w1

w2

)
, (3.27)
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where

G′11 ∈ R2N×2N :
⌈
G′11

⌉
j,k

=
⌈
G′(yi+1

` )
⌉
j,k
, (3.28a)

G′21 ∈ Rq×2N :
⌈
G′21

⌉
m,k

=
⌈
G′(yi+1

` )
⌉

2N+m,k
, (3.28b)

G′22 ∈ Rq×q :
⌈
G′22

⌉
m,n

=
⌈
G′(yi+1

` )
⌉

2N+m,2N+n
, (3.28c)

G′12 ∈ R2N×q :
⌈
G′12

⌉
j,n

=
⌈
G′(yi+1

` )
⌉
j,n
, (3.28d)

w1 ∈ R2N : dw1ej = −
⌈
G(yi+1

` )
⌉
j
, (3.28e)

w2 ∈ Rq : dw2em = −
⌈
G(yi+1

` )
⌉

2N+m
, (3.28f)

z1 ∈ R2N : dz1ej =
⌈
∆yi+1

`+1

⌉
j
, (3.28g)

z2 ∈ Rq : dz2em =
⌈
∆yi+1

`+1

⌉
2N+m

, (3.28h)

for all j, k = 1, 2, . . . , 2N , and m,n = 1, 2, . . . , q.

The linear system (3.27) can be regarded as a block system of two linear equations with two
unknowns z1 and z2. Assuming that G′11 is non-singular, we express z1 from the first equation
in (3.27) in terms of z2 as

z1 = G′11
−1 (

w1 −G′12z2

)
. (3.29)

We use (3.29) in the second equation in (3.27) to get a single linear equation for the unknown
vector z2 (

−G′21G
′
11
−1

G′12 + G′22

)
z2 = w2 −G′21G

′
11
−1

w1. (3.30)

The vector z2 determined as the solution of (3.30) is then substituted in (3.29). Altogether, the
solution of (3.27) is obtained in the form

z1 = G′11
−1
[
w1 −G′12

(
G′22 −G′21G

′
11
−1

G′12

)−1 (
w2 −G′21G

′
11
−1

w1

)]
, (3.31a)

z2 =
(
G′22 −G′21G

′
11
−1

G′12

)−1 (
w2 −G′21G

′
11
−1

w1

)
. (3.31b)

The following algorithm is used to compute (3.31):

1. Solve G′11q = w1 and G′11Q = G′12, where q ∈ R2N and Q ∈ R2N×q. It follows from
(3.17) and (3.28a) that the matrix G′11 is block tridiagonal with 2× 2-blocks and thus we
use the Thomas algorithm to compute q = G′11

−1w1 and Q = G′11
−1G′12. Note that the

Thomas algorithm is not expensive from computational point of view since the number of
arithmetic operations depends linearly on the size of the matrix.

2. Solve (G′22 −G′21Q) z2 = w2 −G′21q. Recall that the matrix (G′22 −G′21Q) is a q × q-
matrix, where q denotes the number of material interfaces in the domain, which is usually
a very small number. Consequently, we use the direct Gaussian elimination method to
compute z2 = (G′22 −G′21Q)−1 (w2 −G′21q).

3. Solve G′11z1 = (w1 −G′12z2) again using the Thomas algorithm and obtain
z1 = G′11

−1 (w1 −G′12z2).

4. Set ∆yi+1
`+1 =

(
z1

z2

)
.

Note that if no material interfaces are present in the medium (q = 0), we solve G′11z1 = w1

using the Thomas algorithm only and set ∆yi+1
`+1 = z1.
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Line Search Strategy

The Newton–Raphson method (3.22) seeks the next iteration yi+1
`+1 in the direction ∆yi+1

`+1 in

the domain of definition of G towards the solution of (3.14), where ∆yi+1
`+1 is the solution of

(3.26). If yi+1
` is in a sufficiently close neighborhood of the solution, the iteration method has

a quadratic convergence, [2]. Otherwise,

yi+1
`+1 = yi+1

` + ∆yi+1
`+1 (3.32)

may move too far away from the neighborhood causing the iteration method to stagnate or
diverge. In order to avoid the stagnation, we use the line search strategy with a modifier
η ∈ (0, 1], i.e., we search for yi+1

`+1 in the form

yi+1
`+1 = yi+1

` + η∆yi+1
`+1, (3.33)

where η is the largest value in the set {1, 1/2, 1/4, . . . } such that

‖G(yi+1
` + η∆yi+1

`+1)‖2 ≤
(

1− η

4

)
‖G(yi+1

` )‖2, (3.34)

see [2]. In some cases, the iteration process is unable to decrease ‖G(yi+1
` )‖2 under the required

threshold after the maximal number of iterations ζ` or the minimal admissible line search modifier
ζη and thus we decrease the time step ∆ti by a factor denoted by ζ∆t and restart the iteration
procedure. On the other hand, if the process is convergent for at least ζit successive time
steps, we increase the time step ∆ti by the factor of ζ∆t. We stop the iteration process, when
‖G(yi+1

` )‖2 is lower than a stopping threshold criterion ζG. The typical values of parameters
are ζ` = 100, ζη = 10−4, ζ∆t = 1.5, ζit = 1000, and ζG = 10−6.

3.2. Verification of Numerical Scheme

We test the numerical scheme (3.4) on the analytical and semi-analytical solutions introduced
in Chapter 2. These are available for the static capillary pressure model (τ = 0) and no gravity
(g = 0) only. The convergence of the numerical scheme is investigated for a homogeneous and
heterogeneous porous medium, respectively, by means of the experimental order of convergence.

We consider a one dimensional domain Ω = (0, 1) filled with a porous medium initially fully
saturated by water. In the following simulations, we use laboratory-measured sand properties
provided by CESEP to verify the numerical model under realistic conditions. Parameters of
these sands are described in Tables B.2–B.4 in Appendix B. Since our aim is to simulate the
laboratory experiment held in CESEP, we use the sand A (the Ohji sand) in the presented
numerical experiments.

In each benchmark problem I.–V., water is displaced by air due to an imposed flux at the
boundary. We select the final time T such that the front of the benchmark solution stays inside
the domain Ω = (0, 1).

3.2.1. Benchmark I : Pure Advection

We use the pure advection benchmark (2.14) (see Section 2.2) with S0 = 0.265 (residual water
saturation), Si = 1 (maximal water saturation), and uT (t) = 10−4 ms−1.

In the numerical formulation (3.4), we set Siniw = Si = 1 and at the inlet (x = 0), we prescribe
the Neumann boundary condition as uNn (t, 0) = uT (t) = 10−4 ms−1 and ψDw (t, 0) = 0 Pa. We
choose the final time T = 1000 s such that the front of the analytical solution stays inside Ω.
In Figure 3.2, we compare the numerical solutions computed on regular meshes with mesh sizes
h to the Buckley and Leverett analytical solution.
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Figure 3.2.: Numerical solutions computed for multiple choices of the finite volume size h compared
to the Buckley and Leverett analytical solution; t = 1000 s and ∆t/h = 2 s/cm is kept constant.

3.2.2. Benchmark II : Pure Diffusion in Homogeneous Medium

We use the pure diffusion benchmark problem formulation (2.32) (see Section 2.3) with R = 0
(and thus uT = 0), S0 = 0.5, and Si = 1.

In the numerical formulation (3.4), we set Siniw = Si = 1 and prescribe the following boundary
conditions. At the inlet (x = 0), we set the Dirichlet boundary condition for SDw (t, 0) = S0 = 0.5
and ψDw (t, 0) = 0 Pa and at x = 1 m, we impose zero Neumann boundary velocities
uNn (t, 1) = uNw (t, 1) = 0 ms−1. By choosing the final time of the simulation as T = 15000 s,
we assure that the air-front stays inside Ω during the simulation. We compute the numerical
solutions on a series of regular meshes with decreasing mesh sizes h and compare them to the
McWhorter and Sunada semi-analytical solution in Figure 3.3.
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Figure 3.3.: Numerical solution of the pure diffusion McWhorter and Sunada problem in a homo-
geneous porous medium; t = 15000 s and ∆t/h2 = 4 s/cm2 is kept constant.

3.2.3. Benchmark III : Advection and Diffusion in Homogeneous Medium

We test both advection and diffusion by means of the McWhorter and Sunada problem formu-
lation (2.32) with R = 0.92, S0 = 0.5 and Si = 1. We use (2.48) to compute the McWhorter
and Sunada input flux rate parameter A which, for the selected parameters S0 and R, is
A = 1.53 · 10−3 ms−

1
2 .

In the numerical formulation (3.4), we set Siniw = Si = 1 and prescribe the following boundary
conditions. At the inlet (x = 0), we set the the air and water Neumann boundary velocities to

uNn (t, 0) = At−
1
2 and uNw (t, 0) = (R − 1)At−

1
2 , respectively. At the outlet (x = 1 m), we set
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uNw (t, 1) = RAt−
1
2 ms−1 and SDw (t, 1) = Si = 1. We choose the final time T = 1000 s such that

the air-front stays inside Ω. We compute the numerical solutions on a series of regular meshes
with decreasing mesh sizes and compare them to the semi-analytical solution in Figure 3.4.
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Figure 3.4.: Numerical solution of the advection–diffusion McWhorter and Sunada problem in
a homogeneous porous medium; t = 1000 s and ∆t/h2 = 4 s/cm2 is kept constant.

3.2.4. Benchmark IV : Pure Diffusion in Layered Medium

We consider the pure diffusion benchmark problem with a single material discontinuity (2.56)
(see Section 2.4) with R = 0, SIi = 0.3, and SIIi = 1 with the problem setup sketched in
Figure 2.2b. We assume that Ω is composed of homogeneous subdomains filled with Sands A
and B in ΩI = [0, 1/2] and ΩII = [1/2, 1], respectively, where sand B is finer than sand A. The
sand properties are shown in Table B.2 and B.3 in Appendix B.

In the numerical model (3.4), we set the following initial and boundary conditions. Initially,
Sw(0, x) = 0.3 in ΩI and Sw(0, x) = 1 in ΩII . At x = 0, we prescribe SDw (t, 0) = 0.3 and
a constant water pressure ψDw (t, 0) = 0 Pa, while on the other boundary at x = 1, we set
uNn (t, 1) = uNw (t, 1) = 0 ms−1. We compute the numerical solutions on a series of meshes and
compare them to the van Duijn and de Neef semi-analytical solution [28] in Figure 3.5.
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Figure 3.5.: Numerical solution of the pure diffusion problem in a layered porous medium;
t = 10000 s and ∆t/h2 = 4 s/cm2 is kept constant.

3.2.5. Benchmark V : Advection and Diffusion in Layered Medium

We consider the semi-analytical solution for the diffusion and advection driven flow in a porous
medium with a single material discontinuity (2.56) with R = 0.9, SIi = 0.3, and SIIi = 1. We
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3.2. Verification of Numerical Scheme

use the same setup of the domain Ω as in the previous case.

In the numerical model (3.4), we consider the following initial and boundary conditions.
Initially, Sw(0, x) = 0.3 in ΩI and Sw(0, x) = 1 in ΩII . At x = 0, we set SDw (t, 0) = 0.3
and ψD(t, 0) = 0 Pa. The boundary conditions at x = 1 read as uNn (t, 1) = 0 ms−1 and

uNw (t, 1) = RAt−
1
2 , where A = 5.61 · 10−4 ms−

1
2 . The numerical solutions compared to the

semi-analytical are shown in Figure 3.6.
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Figure 3.6.: Numerical solution of the advection–diffusion problem in a layered porous medium;
t = 1000 s and ∆t/h2 = 4 s/cm2 is kept constant.

3.2.6. Experimental Order of Convergence

For each benchmark solution, we evaluate the experimental order of convergence eoc which
estimates the theoretical order of convergence ε of the numerical scheme. The experimental order
of convergence is computed using the L1 or L2 norm of the difference between the numerical Snumw

and the semi-analytical solution Sanw at the final time of the simulation. For numerical solutions
on two regular meshes with mesh sizes h1 and h2 denoted as Snumw,h1

and Snumw,h2
, respectively, we

expect their error norms to be in the form

||Snumw,h1 − Sanw ||k = C (h1)ε, (3.35a)

||Snumw,h2 − Sanw ||k = C (h2)ε, (3.35b)

where C is some positive constant and k = 1, 2. In (3.35) we assume that ∆t ∝ h and ∆t ∝ h2

for pure advection and advection-diffusion problems, respectively. Using (3.35), the order of
convergence ε is approximated by the experimental order of convergence eock as

ε ≈ eock(h1, h2) =
ln ||Snumw,h1

− Sanw ||k − ln ||Snumw,h2
− Sanw ||k

lnh1 − lnh2
, (3.36)

k = 1, 2.

In Table 3.1, the values of eoc show the convergence rate of the numerical solution towards
the exact solution. These values are typical for a first–order numerical scheme with upwind
technique, [74]. The experimental orders of convergence indicate that the numerical solution
converges to the analytical solution in both homogeneous and heterogeneous benchmarks.

The numerical approximation of the discontinuous fronts is not sharp if the advection term
dominates the flow in Figures 3.2, 3.4, and 3.6. This is due to the upwind technique which
involves excessive numerical diffusion in the numerical scheme.

Figures 3.5 and 3.6 show that the jump in saturations across the interface in the case of the
heterogeneous porous medium is determined correctly.
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eoc1 eoc2

h1 → h2 [cm] I II III IV V I II III IV V

2→ 1 0.18 0.93 0.68 0.82 0.47 0.20 0.74 0.34 0.48 0.29
1→ 1/2 0.62 0.93 0.74 0.89 0.99 0.38 0.76 0.47 0.55 0.58

1/2→ 1/4 0.77 0.89 0.76 0.91 1.12 0.39 0.66 0.55 0.55 0.67
1/4→ 1/8 0.75 0.88 0.85 0.91 1.12 0.36 0.75 0.61 0.56 0.73
1/8→ 1/16 0.80 0.80 0.87 0.92 1.04 0.40 0.74 0.70 0.55 0.65
1/16→ 1/32 0.83 0.67 0.75 0.96 1.01 0.41 0.64 0.66 0.55 0.64
1/32→ 1/64 0.85 0.52 0.63 0.96 1.00 0.43 0.58 0.72 0.54 0.65

Table 3.1.: Experimental orders of convergence eoc1 and eoc2 computed for Benchmark Problems
I–V in L1 and L2 norms, respectively.

3.2.7. Benchmark VI: Barrier Effect Verification

In principle, the benchmark solutions derived by van Duijn and de Neef [28] and Fuč́ık et al. [46]
cannot simulate the barrier effect described in Section 1.9 because they always require a non-zero
flux of the non-wetting phase across the material interface. In order to verify simulation of the
barrier effect using our numerical scheme, we use the problem formulation described in [58], [57,
page 275]. Here, a non-wetting phase, denoted as DNAPL A (see Table B.1, page 121), displaces
water from an initially fully water-saturated, vertically placed column shown in Figure 3.7. At
the inlet (x = 0), the DNAPL velocity is given as un(t, 0) = 3.57 · 10−5 ms−1 whereas the
water velocity is zero. At the bottom of the column, the maximal wetting-phase saturation
Sw = 1 is prescribed and the water pressure is kept constant at 2 · 105 Pa. The column consists
of three sand layers and two different sands denoted as Sand D and E; their properties are
given in Tables B.5, respectively. The sharp material interfaces are placed at x = 0.145 m and
x = 0.345 m, see Figure 3.7. The final time of the simulation T = 1650 s is chosen such that
the DNAPL front stays inside the domain Ω = [0, 0.5].

In Figure 3.8, we show numerical results computed on a series of regular meshes with mesh
size h. The presented results agree with the results obtained by the Fully-Upwind Galerkin
method shown in [57, Fig. 5.39, on page 286] and, therefore, the numerical scheme (3.4) treats
the extended capillary pressure condition (1.37) correctly.

3.3. Simulation of Laboratory Experiment

In this section, we use the numerical scheme (3.4) to simulate a drainage laboratory experiment
[106] in order to investigate how the numerical solutions are affected by the use of the dynamic
effect in capillarity in comparison with the experimentally measured data and with numerical
solutions obtained using the standard, static capillary pressure–saturation relationship.

First, we describe the experimental setup and procedure. We also describe the technique that
were used to determine three functional models of the dynamic effect coefficient τ = τ(Sw) and
summarize other relevant data that will be later used in the numerical simulations as input
parameters. Then, we simulate the drainage flow regime under dynamic conditions using the
measured data and the models for the capillary pressure–saturation relationship under static and
dynamic conditions. As a result, we present and discuss measured and numerically simulated
time evolution of the saturation and capillary pressure.
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Figure 3.7.: Geometric configurations with boundary conditions of a three-layered porous medium
for Benchmark Problem VI (redrawn from [57, Fig. 5.30, on page 275]).
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Figure 3.8.: Numerical solutions of Benchmark Problem VI. The time step ∆t is chosen adaptively.

3.3.1. Description of Experimental Setup

The experiment consisted of a single, vertically placed 10 cm long Tempe cell uniformly filled
with a homogeneous field sand from a site Ohji sampled in Tokyo, Japan, [104], [105], [106].
A schematic view of the experimental apparatus is shown in Figure 3.9. The following detailed
description of the apparatus and measurement procedure was provided by Prof. Sakaki (edited):

Two tensiometers were installed in the middle of the sample height (at x = 5 cm)
for water pressure measurement. The porous cup was glued to a brass tubing con-
nector that was connected to a pressure transducer. Roughly 2.5 cm of the porous
cup penetrated into the sand sample. Pressure readings from the two tensiometers
were averaged and used as the capillary pressure pc based on the assumption that
air equilibrates to atmospheric faster than the interval over which water pressures
are measured using the pressure transducers. This assumption has been confirmed
in separate experiments using the same experimental procedure and apparatus (e.g.,
porous media, Tempe cell) where both the air and water pressures were quantified
at the column midpoint for a selected subset of experiments conducted in this study
(results not shown). These separate experiments found that the air phase rapidly
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equilibrates to atmospheric pressure at the column midpoint, the measurement loca-
tion. Using a two–phase flow numerical model [14], it was further confirmed that
the air phase pressure at the column midpoint, when a suction of −80 cm water is
applied at the column midpoint, is less than −0.2 cm water after 2.5 minutes. This
suggests that it is appropriate to assume that the water pressure measured by the two
tensiometers in this study can be considered as the capillary pressure.

A soil moisture sensor was installed in the middle of the sample height to quantify
water saturation. The moisture sensor uses capacitance to measure the apparent
dielectric constant of the surrounding medium. The moisture sensor was installed
with the prongs in a vertical orientation (one on top of the other) to minimize inter-
ferences with the flow path (see Figure 3.9). Under the given sensor configuration,
the sampling volume of the moisture sensor is enclosed within a vertical thickness of
1.0 − 1.5 cm [76]. This can be considered to be sufficiently small for the measured
water saturation to be considered a point-value [108], [104]. The measured water
pressure is representative of the mid slice with a thickness of 0.64 cm. Thus, it
is appropriate to assume that the retention curves constructed using the measured
capillary pressure and water saturation values are those at the midpoint in the soil
column.

In these experiments, it was also crucial that measurements of the water pressure
and saturation were made at the same time. The response time of the water pressure
(pressure transducer and porous cups) and saturation measuring systems were tested
and found to respond quickly (on the order of 1 to 2 seconds for the pressure mea-
surement, whereas the soil moisture sensor response was almost instantaneous). It
was thus assumed that the response times were within the necessary tolerance as pres-
sure and saturation were quantified every 15 seconds in both the static and dynamic
experiments.

Finally, the ceramic porous plate at the bottom of the column was replaced by a hy-
drophilic Nylon membrane. The membrane was glued onto a perforated acrylic plate
that has the same dimensions as the porous plate. It was further assumed that po-
tential dynamic effects within the membrane were negligible since the membrane was
initially water-saturated and no change in saturation occurred during the experi-
ment [14]. The bottom of the column was connected to a constant-head reservoir
whose elevation can be varied. A more detailed description of the modification of the
Tempe cell is provided in [104].

The Ohji sand is denoted as sand A and its physical properties are given in Table B.2 in
Appendix B. Initially, the column was flushed with water such that no air phase was present
inside. A series of slow drainage steps was carried out in order to determine the capillary
pressure–saturation relationship in equilibrium peqc = peqc (Sw). The fitted Brooks and Corey
model parameters are shown in Table B.2 (page 122). Then, a series of fast drainage and
imbibition experiments was performed and values of the capillary pressure and the air saturation
were measured by probes sensors in the middle of the column. In the primary drainage cycle,
the measured τ exhibited a dependency on saturation shown in Figure 3.10. Therefore, three
models were fitted and evaluated and their explicit formulae are given in Table B.2, [106].

3.3.2. Numerical Simulation

We use the numerical scheme (3.4) to simulate the experimental setup using a one-dimensional
domain sketched in Figure 3.11, Case 1. We compare the time evolution of the simulated and
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the atmosphere through a small hole on the top cap. The bottom boundary was connected to the
constant-head water reservoir. Water pressure was measured with two tensiometers and averaged.
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Figure 3.10.: Fitted models of dynamic coefficient τ (log–scale) to the observed laboratory data
(after Sakaki et al., 2010, [106]).

measured air saturation Sn(t, 5 cm) and capillary pressure pc(t, 5 cm) in the middle of the column
using the static and dynamic models for the capillary pressure.

Initially, the column is fully water-saturated such that Sw(0, x) = 1 for all x ∈ (0, 1). At the
upper boundary, uNw (t, 0) = 0 ms−1 and the air pressure is assumed to be constant and equal
to the atmospheric pressure pn(t, 0) = 105 Pa. At the lower boundary, we prescribe the water
outflow uwater (solid line in Figure 3.12) that was measured during the laboratory experiment,
i.e., uNw (t, 10 cm) = uwater(t). Due to the presence of the hydrophilic membrane that does not
allow air to penetrate, we set uNn (t, 10 cm) = 0 ms−1.

The resulting time evolution of the air saturation Sn and the capillary pressure pc in the
middle of the column are shown in Figure 3.13. In Figure 3.13, the solutions have non-smooth
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Figure 3.11.: A sketch of homogeneous (Case 1) and layered (Cases 2–4) configurations of the
porous medium. In each case, the porous medium is placed vertically and fully water-saturated
Sw = 1 at t = 0 s. The gravitational acceleration vector g points in the positive x-direction.

shapes but those are caused solely by the non-smoothness of the prescribed flux of water at
x = 10 cm. Since the temporal derivative of the air saturation is directly influenced by the given
flux, the non-smoothness is magnified in the values of the dynamic capillary pressure given by
(1.29). This is why the bumps do not appear in the case of the static capillary pressure. In
Figure 3.15, we show profiles of the saturation and capillary pressure at t = 300 s obtained
using the experimentally measured outflow. To assure that the differences among the numerical
solutions with respect to different models of τ(Sw) are not caused by the non-smoothness of the
prescribed flux, we use a smooth functional approximation of the boundary flux that preserves
the total mass of the effluent water in the form

u∗water(t) = 3.7 · 10−5 exp(−1.7 · 10−3t) + 7.4 · 10−7 [ms−1]. (3.37)

In Figure 3.12, the measured flux of water is compared to its smooth functional approximation
u∗water. As shown in Figure 3.14, the numerical solutions computed with u∗water are smooth alter-
nates to the bumpy shaped solutions in Figure 3.13. Apparently, the bumpiness of the capillary
pressure is not caused by the numerical scheme and the non-smoothness of the prescribed flux
does not affect significantly the overall time evolution of the solutions.

The influence of different models of the dynamic effect coefficient τ on the numerical solution
of the air saturation Sn is negligible (see Figures 3.13 and 3.14). On the other hand, their
influence on the capillary pressure pc is important in cases, where there is a temporal change in
Sn because the time derivative of Sn is multiplied by the dynamic effect coefficient τ in equation
(1.29). Lower parts of Figures 3.13 and 3.14 show time evolution of pc for various models of
τ = τ(Sw) compared to the static pc (red line) and also to the laboratory measured values
(black dashed line). The values of pc for the static, linear, and loglinear model of τ are strictly
increasing in time which agrees to the laboratory measured evolution of pc. However, the values
of pc with the constant model for τ exhibit different behavior. First at t = 3 min, the value
of pc rapidly jumps to 4800 Pa. Then, it strictly decreases towards the values of the static pc.
In the first 10 minutes of the simulation, the saturation Sn in the middle of the column steeply
increases from 0 to 0.25. In Figure 3.10, the linear and exponential models for τ have more than
one order of magnitude lower values than the constant model for the values of Sw ∈ (0.75, 1) that
correspond to Sn ∈ (0, 0.25). Consequently, the dynamic effect term in (1.29) gives substantially
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Figure 3.12.: Measured and smoothly approximated water outflow from the column at x = 10 cm.

higher values of τ for the constant model than for the other models which explains the different
time evolution of pc in Figures 3.13 and 3.14.
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Figure 3.13.: Numerical solutions and measured laboratory values of Sn and pc in the middle of
the column for various models of τ = τ(Sw). Numerical solutions were obtained with N = 400
nodes, adaptive time stepping strategy, and by using laboratory measured flux (see the solid line
in Figure 3.12) through the lower boundary.
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Figure 3.14.: Numerical solutions and measured laboratory values of Sn and pc in the middle of the
column for various models of τ = τ(Sw). Numerical solutions were obtained with N = 400 nodes,
adaptive time stepping strategy, and by using smooth flux (see the dashed line in Figure 3.12)
through the lower boundary.
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Figure 3.15.: Example of the numerical solutions obtained with N = 800 nodes and adaptive time
stepping strategy. Distribution of the air saturation Sn and capillary pressure pc at t = 300 s shows
the differences among the solutions using multiple models of the dynamic coefficient τ = τ(Sw).
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3.3.3. Dynamic Coefficient Sensitivity Analysis

In order to assure that the different time evolution of pc for the constant model of τ is caused by
the magnitude of the dynamic effect term in (1.29) only and not by the choice of the functional
dependency of τ = τ(Sw), we present a sensitivity analysis of the numerical solution on the
absolute value of the dynamic effect coefficient. As in the previous section, we use the numerical
scheme (3.4) to simulate the laboratory experiment using the smoothened water flux u∗water.
We multiply the three measured dynamic coefficient models by 2, 4, 6, and 8, respectively, and
observe the time evolution of Sn and pc in the middle of the column in Figures 3.16–3.18.

The evolution of the air saturation obtained using the amplified dynamic coefficients τ are
nearly identical to the results in Figure 3.14 which mimic the experimental conditions and
laboratory determined values. On the other hand, the evolution of the capillary pressure using
the amplified dynamic coefficients exhibits a rapid increase in the beginning of the simulation
(from 0 to 1 minute in Figure 3.16, from 0 to 10 minutes in Figure 3.17, or from 0 to 15 minutes
in Figure 3.18). Then, the capillary pressure decreases smoothly towards the solution obtained
using the static model (the dashed line in Figures 3.16–3.18). The change in monotonicity in
time of pc is observed for all of the considered functional models τ = τ(Sw) and is directly
proportional to the magnitude of the dynamic effect coefficient. Consequently, the different
time evolution of pc with constant τ with respect to the linear and exponential models for τ
in Figures 3.13 and 3.14 is due to large values of τconst with respect to τlin and τexp for high
wetting-phase saturation in Figure 3.10.

While the change in saturation is negligible in Figures 3.13–3.18, the magnitude of the capillary
pressure with the dynamic effect may differ substantially from the static model.
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Figure 3.16.: Numerically simulated evolution of Sn and pc in the middle of the column obtained
using the smooth flux u∗water through the lower boundary, N = 400 nodes and adaptive time
stepping strategy. The static capillarity model is compared to the dynamic models of pc with the
constant model of τ(Sw) = τconst and its multiples (sensitivity analysis).
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Figure 3.17.: Numerically simulated evolution of Sn and pc in the middle of the column obtained
using the smooth flux u∗water through the lower boundary, N = 400 nodes and adaptive time
stepping strategy. The static capillarity model is compared to the dynamic models of pc with the
linear model of τ(Sw) = τlin(Sw) and its multiples (sensitivity analysis).
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Figure 3.18.: Numerically simulated evolution of Sn and pc in the middle of the column obtained
using the smooth flux u∗water through the lower boundary, N = 400 nodes and adaptive time
stepping strategy. The static capillarity model is compared to the dynamic models of pc with the
exponential model of τ(Sw) = τexp(Sw) and its multiples (sensitivity analysis).
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3.4. Numerical Simulations in Layered Medium

As described in Section 1.9, the magnitude of the capillary pressure plays a crucial role in the
propagation of fluids across material interfaces, when the non-wetting fluid flows from a coarser
to a finer porous material. In this section, we investigate effects of different dynamic capillary
pressure models on the behavior of the air phase at heterogeneity interfaces. Since no laboratory
experiment involving dynamic capillary pressure is available for such a case, only a numerical
simulation is provided in this section. Similar to the setup of the laboratory experiment in
Section 3.3, we consider a vertically–placed column filled with two different sands (denoted as
I and II). Both sands are separated by a sharp interface in the middle of the column, see Fig-
ure 3.11, Cases 2 and 3. Initially, the column is fully water-saturated. At t = 0, the water starts
to flow out of the column at x = 10 cm and its flow rate is given by the smooth flux u∗water
defined by (3.37) because our goal is to mimic the conditions from the laboratory experiment
described in the previous section. In the numerical simulation, we use the same initial and
boundary conditions as in Section 3.3.2, i.e., Sw(0, x) = 1 for all x ∈ (0, 1), at the upper bound-
ary, uNw (t, 0) = 0 ms−1 and the air pressure is assumed to be at constant atmospheric pressure
pn(t, 0) = 105 Pa, and at the lower boundary, we set uNn (t, 10 cm) = 0 ms−1 and prescribe
uNw (t, 10 cm) = uwater(t) for Simulation 1 (Section 3.4.1) and uNw (t, 10 cm) = 10−4 ms−1 for
Simulation 2 (Section 3.4.2), respectively.

3.4.1. Simulation 1: Laboratory Measured Sands

There is no known laboratory measured model for the dynamic coefficient τ for the sand B or
C and the air-water system. However, the Stauffer model τS,B and τS,C given by (1.30) can be
computed for these sands, respectively.

In order to estimate functional models τ = τ(Sw), we scale the three functional models
obtained in the laboratory experiment by the ratio between the Stauffer models τ IS and τ IIS such
that

τ IS
τ IIS

=
τ I(Sw)

τ II(Sw)
, ∀Sw. (3.38)

Using this technique, we produced the dynamic effect coefficients τ = τ(Sw) for the sands B and
C, see Tables B.3 and B.4, respectively.

In Figure 3.19, we show the front position of the air saturation in time for different models
of the dynamic coefficient τ = τ(Sw). First, the air flows from the fine to the coarse sand
(Figures 3.19a and 3.19c) and then, we consider the opposite configuration (Figures 3.19b and
3.19d), where the barrier effect is simulated. The barrier effect, modelled by the Brooks and
Corey model (1.23) and the extended capillary pressure condition (1.39) for the capillary pressure
pc, implies that the non-wetting fluid (air) cannot enter the finer sand unless its capillary pressure
at the interface is higher than the entry pressure pd of the finer sand. In all cases, the use of
the linear model of τ = τ(Sw) causes faster propagation of the air front in the porous media
whereas the exponential model does not influence the speed substantially with respect to the use
of the static capillary pressure. The constant model of τ = τ(Sw) exhibited a different behavior
in different situations. In Figure 3.19a and 3.19b, for instance, the solution obtained with
constant τ has a substantially slower front propagation than other solutions. We believe that
this is because the constant model overestimates the dynamic coefficient for high wetting-phase
saturation Sw (see Figure 3.10).

The delay of the non-wetting phase at the interface due to barrier effect differs when various
configurations of sands are used. In the case of sand B with lower entry pressure than sand C
(Figure 3.19b), the time required to penetrate the finer medium is generally smaller when using
the dynamic models of capillarity than in the case of the static capillary pressure. However, in
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Figure 3.19.: Time evolution of the front position of the air saturation. Note that both sands B
and C are finer than sand A. Therefore, figures (b) and (d) shows situations where the barrier
effect is simulated: Simulation 1.
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Figure 3.20.: Distribution of the air saturation Sn and capillary pressure pc in Ω at t = 500 s
for the sand A–sand B configuration for various models of τ = τ(Sw). Numerical solutions are
obtained with N = 400 nodes and adaptive time stepping strategy. Simulation 1.

case of finer sand C, these penetration times are comparable, or even larger than in the static
case (Figure 3.19d).
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Figure 3.21.: Distribution of the air saturation Sn and capillary pressure pc in Ω at t = 200 s
for the sand B–sand A configuration. Numerical solutions are obtained with N = 400 nodes and
adaptive time stepping strategy. Simulation 1.
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Figure 3.22.: Distribution of the air saturation Sn and capillary pressure pc in Ω at t = 500 s
for the sand A–sand C configuration. Numerical solutions are obtained with N = 400 nodes and
adaptive time stepping strategy. Simulation 1.

3.4.2. Simulation 2: Entry Pressure Sensitivity Analysis

We use a layered medium configuration sketched in Figure 3.11 (Case 4) in order to investigate
sensitivity of the propagation speed on the ratio between the entry pressures of layers consisting
of sand A overlying sand Aκ. The value of the entry pressure in sand Aκ is defined as

pd,Aκ = κ pd,A, (3.39a)

where pd,A denotes the entry pressure of the sand A and

KAκ =
1

κ2
KA, (3.39b)

where KA denotes the intrinsic permeability of the sand A. The intrinsic permeability KAκ in
(3.39) is evaluated using the Leverett scaling pc ∝

√
Φ/K (c.f. [75]) which is in agreement with
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Figure 3.23.: Distribution of the air saturation Sn and capillary pressure pc in Ω at t = 200 s
for the sand C–sand A configuration. Numerical solutions are obtained with N = 400 nodes and
adaptive time stepping strategy. Simulation 1.

the Hagen–Poiseuille law, see [107], [111]. We assume that porosities in both sands are the same.
Unlike in the previous case, we prescribe constant flow rate uw(t, 10 cm) = 10−4 ms−1 at the
lower boundary of the column. Figure 3.24 shows times when the air phase reaches the bottom
boundary (at x = 10 cm) using the dynamic or static models of capillary pressure. As shown by
the long-dashed line in Figure 3.24, the propagation speed of the linear model of τ is almost two
times faster than in the case of the static capillary pressure (dash-dotted line, τ = 0) when the
medium is homogeneous (κ = 1). Then, by increasing κ (i.e., coarse top, fine bottom), the travel
time of the air-front for the linear model of τ = τ(Sw) increases and approximately at κ ≈ 1.7,
it crosses the curve corresponding to the static capillary pressure. In the case of the loglinear
model, the travel times are similar to the static case when κ is near 1 and they become larger
for κ > 1.3. The constant model has a substantially slower propagation speed with respect to
the static case for all considered values of κ. These results agree with the findings shown in
Figure 3.19, where the ratio between the entry pressures is κA/B = 1.17 and κA/C = 2.33 for
the sand A–sand B and sand A–sand C configurations, respectively.

In order to explain different delays at the interface observed in Figure 3.19a and 3.19b, we
focus on the situations where the barrier effect is simulated, i.e., κ > 1. In Figure 3.25, we
plot accumulation times as a function of κ. Here, the accumulation time is defined as the delay
between the times when the non-wetting phase reaches and penetrates the material interface,
respectively. In Figure 3.25, the results approximately correspond to the already observed be-
havior of different simulated delays due to barrier effect in Figure 3.19a and 3.19b (see the points
pd,B/pd,A and pd,C/pd,A in Figure 3.25). In general, the accumulation times for κ < 2 are notably
lower and for κ > 3 substantially higher when using the dynamic effect in capillarity compared
to the reference curve with static capillary pressure (drawn as dash-dotted). Additionally, for
higher differences in entry pressures, the curves tend to a steady state and when using the dy-
namic model of capillarity, the accumulation times are more than three times higher than in the
case of the static capillary pressure. Hence, in case of a heterogeneous medium, the inclusion of
the dynamic effect in the capillary pressure may substantially change the simulated evolution of
the flow since the entry pressure of the finer porous media can be achieved sooner or later than
in the static case (see Figures 3.19 and 3.24).
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3.5. Concluding Remarks

A one-dimensional numerical scheme of two-phase incompressible and immiscible flow is pre-
sented that enables simulation of two-phase flow in both homogeneous and heterogeneous me-
dia under dynamic capillary pressure conditions, where the treatment of the conditions at the
material interfaces is not numerically trivial. The numerical scheme is verified and its order of
convergence is estimated using the semi-analytical solutions for homogeneous and heterogeneous
porous medium, respectively.

Laboratory measured parameters were used in the numerical simulation of the dynamic capil-
lary pressure including three models of the dynamic effect coefficient τ = τ(Sw). The numerical
solutions for the dynamic effect in the capillary pressure show that the dynamic effect has a sig-
nificant impact on the magnitude of the capillary pressure while the change in the saturation
profiles may be considered negligible in some cases. The constant model of τ showed rather
unrealistic profile of the numerical approximation of the capillary pressure when compared to
the laboratory measured data.

The results of simulations indicate that the dynamic effect may not be so important in drainage
problems in a homogeneous porous medium, but, it may be important in heterogeneous media
where the capillarity governs flow across material interfaces. The linear model of τ accelerates
the flow of air across the interface for both configurations of the coarse and fine porous media,
when the ratio between entry pressures of the media is close to 1. In all other cases, the use of
the dynamic effect seems to increase the time needed for the non-wetting fluid to accumulate at
a finer sand interface (delay due to barrier effect). This suggests that without dynamic effects,
the travel time of the non-wetting phase can be possibly estimated to be smaller or larger than
the actual time. The conclusion can be settled by a laboratory experiment only.
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CHAPTER 4

A HIGHER–ORDER SCHEME FOR TWO-PHASE FLOW IN
LAYERED MEDIA

I
n this chapter, our aim is to develop a higher–order numerical scheme suitable for simulating
flow of two immiscible and incompressible phases in heterogeneous porous media. Unlike
in the previous chapters, we consider only static capillary pressure pc = peqc . In order to

model two-phase flow in heterogeneous porous materials, a large number of numerical methods
has been developed based on the finite difference (FD), finite volume (FV), or finite element
(FE) methods. These methods have typically low accuracy and their experimental order of
convergence usually gives values lower than 1, see [82, page 63]. The conventional FD method is
strongly influenced by the mesh quality and orientation, which makes the method unsuitable for
a large number of real world problems modelled using unstructured grids [101]. There have been
attempts to improve the accuracy of the FD or FV approach on unstructured meshes by using
multi-point flux approximation techniques [93]. However, such techniques have not been demon-
strated to be of value for heterogeneous media, [65]. Another effort to develop a higher–order
numerical scheme was based on the mixed-hybrid finite element (MHFE) method such as [89]
or [32]. However, none of these proposed MHFE formulations were able to simulate two-phase
flow in heterogeneous porous media with discontinuities in saturations at material interfaces
that are caused by different capillary pressure functions (cf. Section 1.9). Recently, Hoteit and
Firoozabadi [63], [64], [65] developed a higher–order numerical method that combines the MHFE
approach and the discontinuous Galerkin (DG) method, together denoted as MHFE-DG. Their
approach can be used to model two–phase flow in heterogeneous porous media with sharp jumps
in saturation across material interfaces. However, their scheme fails in simulating the capillary
barrier effect. We extend the main ideas presented in [4], [33], [63], [64], [65], and [84], in or-
der to develop a model suitable for modelling two-phase flow of immiscible and incompressible
fluids in porous medium with material inhomogeneities. The MHFE-DG approach is a mod-
ern, interesting method that allows for accurate representation of the phase velocities across
sides of a finite element and approximates saturation as piecewise discontinuous per elements.
This facilitates discretization of the two-phase flow problems especially in case of heterogeneous
porous materials and fractured media, where the saturation is often discontinuous across sharp
heterogeneity interfaces.

Our primary goal is to investigate applicability of the MHFE-DG method to problems in
heterogeneous porous materials, where the flow is mostly driven by the capillarity. We focus
on the behavior of the non-wetting phase at material discontinuities. Although the authors
in [65] claim that their numerical scheme is capable of simulating the barrier effect, we found
the opposite. In [65] they support their statement by using the van Duijn and de Neef semi-
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analytical solution (see Section 2.4). However, they misinterpreted the findings of van Duijn
and de Neef [28], [29] because such a solution cannot simulate the NAPL pooling. Thus, we
improve the MHFE-DG approach by incorporating the extended capillary pressure condition
(1.37) and we propose several modifications that enable simulating the barrier effect described in
Section 1.9. Moreover, we use a more straightforward mathematical derivation when assembling
the system of linear equations for the unknown variables than in [65].

This chapter is organized in the following way. In Section 4.1, we present a complete derivation
of the MHFE-DG numerical scheme based on [65]. In contrast to [65], our numerical scheme
is capable of simulating the barrier effect. In the final subsection of Section 4.1, we summarize
the MHFE-DG method and describe the computational algorithm. In Section 4.2, we test
the MHFE-DG method in 1D using the analytical and semi-analytical solutions introduced
in Chapter 2. Additionally, we compare these results to the numerical results obtained using
the VCFVM discussed in Chapter 3. In Section 4.3, we test the MHFE-DG approach using
benchmark solutions for layered porous media in 1D and 2D. In Section 4.4, we use the MHFE-
DG method to simulate problems of two-phase flow in two-dimensional heterogeneous porous
materials, where the barrier effect is simulated. In the final Section 4.5, we summarize our
findings and discuss benefits of the MHFE-DG method.

4.1. Mixed–Hybrid Finite Element & Discontinuous Galerkin Method

In this section, we present a detailed derivation of the MHFE-DG method. First, we present the
formulation of the mathematical model and the variational formulation of the MHFE method.
Then, we discuss the spatial approximation of the velocities in the lowest order Raviart-Thomas
space and construct systems of linear equations. Next, we use the discontinuous Galerkin method
to discretize the evolution equation for the wetting-phase saturation and obtain a system of
Ordinary Differential Equations (ODE) which is solved numerically by using the forward Euler
method. Finally, we summarize the computational algorithm of the MHFE-DG method.

We recall the complete set of equations (1.49, page 19) in Ω ⊂ Rd, where d = 1 or 2. Summing
(1.49a) and (1.49b), we obtain the following equation for the divergence of the total velocity (see
(2.3))

∇·ut = ∇·(uw + un) = Fw + Fn, in Ω. (4.1)

As in [65], we rewrite the definition of the total velocity ut in the following way

ut = uw + un, (4.2a)

= −λtK∇ψw − λn∇ψc, (4.2b)

= ua + fnuc, (4.2c)

where the velocity ua has the same driving force as the velocity uw but with a smoother mobility
λt and the velocity uc includes the capillary driving forces,

ua = −λtK∇ψw, (4.3a)

uc = −λtK∇ψc. (4.3b)

In contrast to [65] where the capillary velocity uc is defined as

uHoteitc = −λnK∇ψc, (4.4)

we use the definition (4.3b). Later in Section 4.1.1, in order to obtain an explicit expression
for ∇ψc, we will need to invert λtK in the relationship (4.3b). This is always possible since
λt = λt(Sw) is strictly positive for all Sw. However, similar inversion cannot be done using the
definition (4.4) since the non-wetting phase mobility λn vanishes as Sw → 1.
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The phase velocities uw and un, can be expressed in terms of ua and uc as

uw = fwua, (4.5a)

un = fnua + fnuc. (4.5b)

In order to express the velocities ua and uc in terms of the phase velocities uw and un, we
consider the inverse relationship:

ua =

{
0 if fw = 0,
f−1
w uw otherwise,

(4.6a)

uc =




−uw if fn = 0,
un if fw = 0,
f−1
n un − f−1

w uw otherwise,
(4.6b)

where we assume that the value of the fractional flow functions are nonzero (fα 6= 0), if uα 6= 0,
α ∈ {w, n}. This assumption is consistent with the definition of the phase mobility, i.e., the
α-phase mobility cannot be zero if the phase velocity is nonzero. The evolution equation for the
wetting phase saturation (1.49a) in terms of ua reads as

φ
∂Sw
∂t

+∇·(fwua) = Fw. (4.7)

We consider a spatial discretization Kh of the polygonal domain Ω consisting of elements K,
where K are segments in R or triangles in R2 and h > 0 is the mesh size defined as the maximum
element diameter. We assume that the mesh is regular and conforming, i.e., the intersection of
two elements is either empty, a vertex, or an edge. We denote by Vh the set of all vertices V of
Kh , by Eh the set of all sides of Kh, and by E inth and Eexth the set of interior and exterior sides
of Kh, respectively. By EK , we denote the set of all sides of an element K ∈ Kh.

4.1.1. Velocity Approximation

We assume, that the velocities uα, where α ∈ {w, n, a, c}, belong to the functional space
H(div,Ω) which is the space of functions with square–integrable weak divergences,

H(div,Ω) = {v ∈ [L2(Ω)]d;∇·v ∈ L2(Ω)}. (4.8)

RT0 Space

On each element K ∈ Kh, we shall approximate the phase velocities uα in the lowest order
Raviart–Thomas space RT0(K), [16], [17]. The space RT0(Kh) ⊂ H(div,Ω) is a space of vector
functions having on each element K ∈ Kh the form

dvej = ajK + bjK dxej , (4.9)

where dxej denotes the j-th component of the vector x, j = 1, 2, . . . , d. Note that the requirement
that RT0(Kh) ⊂ H(div,Ω) imposes the continuity of the normal trace across all internal sides
E ∈ E inth which is exactly what we need for local mass conservation in (1.4) and (1.35). Recall
that v ·nK,E is constant for all E ∈ EK and that these side–fluxes denoted in the latter by uK,E
also represent the degrees of freedom of RT0(Kh). By nK,E , we denote the outward unit normal
to side E ∈ EK with respect to element K.

In the following, we describe the basis functions of RT0(Kh) that we use on each element
K ∈ Kh in Rd, d = 1, 2. For all elements K ∈ Kh, we choose the basis functions wK,E ∈ RT0(K)
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such that

wK,E ·nK,F = δEF
1

|E|d-1
, ∀E,F ∈ EK , (4.10a)

∇·wK,E =
1

|K|d
, ∀E ∈ EK , (4.10b)

where d denotes the dimension of Rd and δEF is the Kronecker symbol. Note that for conve-
nience, we set |E|0 = 1 for all E ∈ EK .

RT0 Basis Functions in 1D

In R1, all elements K ∈ Kh are segments with vertices VA ∈ VK and VB ∈ VK , VA < VB, and
RT0(Kh) coincides with the space of piecewise linear polynomials that we denote by D1(Kh)
(see also the definition (4.61)). Since EK = VK , the properties of the basis functions (4.10a) in
a one–dimensional element K read as

wK,VA(VA) = −1, wK,VA(VB) = 0, (4.11a)

wK,VB (VA) = 0, wK,VB (VB) = 1. (4.11b)

Altogether, the explicit expression for the basis functions in RT0(K) satisfying (4.11) is

wK,Vα(x) =
x− Vα
VB − VA

=
1

|K|1
(x− Vα), (4.12)

for all α ∈ {A,B} and x ∈ K = [VA, VB].

RT0 Basis Functions in 2D

In R2, the mesh Kh consists of triangles K with vertices VA, VB, and VC from VK . For each
vertex VA ∈ VK , we denote by EA ∈ EK the side opposite to the vertex VA, see Figure 4.1. In
order to satisfy (4.10), basis vector functions are constructed as

wK,EA =
1

2|K|2
(x−VA) , (4.13)

for all EA ∈ EK and x ∈ K.

vertex
VA

vertex
VB

vertex
VC

edge
EA

edge
EB

edge
EC

(a) wK,EA

vertex
VA

vertex
VB

vertex
VC

edge
EA

edge
EB

edge
EC

(b) wK,EB

vertex
VA

vertex
VB

vertex
VC

edge
EA

edge
EB

edge
EC

(c) wK,EC

Figure 4.1.: Raviart–Thomas basis functions wK,EA (a), wK,EB (b), and wK,EC (c) on a triangleK.
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Variational Approximation of Velocity

In all dimensions, the velocity uα is approximated in the basis of RT0(K), K ∈ Kh, as

uα =
∑

E∈EK
uα,K,EwK,E , α ∈ {a, c}, (4.14)

where uα,K,E are the side–flux variables across the side E ∈ EK in the outward direction with
respect to K.

Next, we shall reveal the relationship between the potentials ψw and ψc and the side-velocities
ua,K,E and uc,K,E .

By inverting the permeability tensor K and the total mobility λt in (4.3a), we obtain

λ−1
t K−1ua = −∇ψw. (4.15)

Recall that we assume K positive definite and λt = λt(Sw) strictly positive for all Sw. The
variational formulation is obtained by multiplying (4.15) by the test functions from H(div,Ω)
that are represented on each element K ∈ Kh by the RT0(K) basis functions wK,E . Then, we
integrate the resulting product by parts over K and obtain

∫

K

λ−1
t wK,EK−1ua = −

∫

K

∇ψw ·wK,E (4.16a)

=

∫

K

ψw∇·wK,E −
∫

∂K

ψwwK,E ·n∂K (4.16b)

=

∫

K

ψw∇·wK,E −
∑

F∈EK

∫

F

ψwwK,E ·nK,F (4.16c)

=
1

|K|d

∫

K

ψw −
1

|E|d-1

∫

E

ψw (4.16d)

= ψw,K − ψw,E , (4.16e)

where we used the properties of the Raviart–Thomas basis functions (4.10). By ψw,K and ψw,E ,
we denote the average value of ψw over the element K and the side E ∈ EK , respectively. Since
the wetting-phase potential is always continuous across the element boundary, we unified the
notation ψw,E for the average of the potential over the side E, where E denotes the global side
E ∈ Eh independently of the parent element K.

We approximate the inversion of the total mobility term λ−1
t in the left–hand–side of (4.16a)

by its average value over K as
∫

K

λ−1
t wK,EK−1ua ≈ λ−1

t,K

∫

K

wK,EK−1ua, (4.17)

where

λ−1
t,K =

1

|K|d

∫

K

λ−1
t . (4.18)

We substitute the expression (4.14) for the velocity uα into the integral in the right–hand–side
of (4.17) and obtain

∫

K

wK,EK−1ua =
∑

F∈EK
ua,K,F

∫

K

wK,EK−1wK,F (4.19a)

=
∑

F∈EK
ua,K,FAK,E,F , (4.19b)
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where the coefficients {AK,E,F }E,F∈EK given by

AK,E,F =

∫

K

wK,EK−1wK,F , (4.20)

form a local matrix AK on K.

Putting both left and right hand side expansions (4.16) and (4.19) together, we obtain a system
of d+ 1 linear equations for d+ 1 unknown side–fluxes ua,K,E

∑

F∈EK
ua,K,FAK,E,F = λt,K (ψw,K − ψw,E) , (4.21)

for all E ∈ EK .

Under the assumption that K is a symmetric and positive definite tensor, AK is symmetric,
positive definite, and therefore invertible. By aK = {aK,E,F }E,F∈EK , we denote the inversion
of AK , i.e., aK = A−1

K . Using this notation, we express the side fluxes ua,K,E in terms of the
cell–average potentials ψw,K and side–average potentials ψw,F ,

ua,K,E = λt,K


aK,Eψw,K −

∑

F∈EK
aK,E,Fψw,F


 , (4.22)

where

aK,E =
∑

F∈EK
aK,E,F . (4.23)

In (4.22) we assume that the side-average potentials ψw,E are for all E ∈ Eh continuous across
the internal sides and, therefore,

ψw,K1,E = ψw,K2,E = ψw,E (4.24)

for all neighboring elements K1 and K2 of E ∈ E inth . Additionally, we drop out the element
index K from the side–average potential ψw,K,E = ψw,E also for all external (boundary) sides
E ∈ Eexth .

We reproduce the steps (4.15) to (4.21) also for the expression of the capillary velocity uc in
the basis of RT0(K) and we obtain

uc,K,E = λt,K


aK,Eψc,K −

∑

F∈EK
aK,E,Fψc,K,F


 , (4.25)

where ψc,K,F denotes the potential ψc averaged over side F with respect to triangle K for all
F ∈ EK .

4.1.2. System of Equations for Capillary Potentials

Internal Sides

Let us consider two neighboring elements K1 and K2 shown in Figure 4.2. Assuming that no
mass is produced or lost on an internal side E ∈ EK1 ∩ EK2 , we consider the following balance
of the normal components of the phase velocities across E:

uα,K1,E + uα,K2,E = 0, α ∈ {w, n}. (4.26)
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It follows from the expression (4.6b) for the capillary velocity uc that a balance equation similar
to (4.26) holds also for the normal components of the capillary velocity uc, [65]. Therefore, we
establish the following system of equations for all E ∈ E inth , E ∈ EK1 ∩ EK2 :

uc,K1,E + uc,K2,E = 0, (4.27)

and we use (4.25) in order to express (4.27) in terms of the side-average potentials ψc,K,E :

λt,K1aK1,Eψc,K1 − λt,K1

∑

F∈EK1

aK1,E,Fψc,K1,F+

+λt,K2aK2,Eψc,K2 − λt,K2

∑

F∈EK2

aK2,E,Fψc,K2,F = 0.
(4.28)

When the capillary potential is continuous across side F ∈ EK1∩EK2 , the side-average potentials
ψc,K1,F and ψc,K2,F coincide and thus we denote their common value as

ψc,F := ψc,K1,F = ψc,K2,F . (4.29)

On the other hand in case of the barrier effect at side F , the capillary potential is discontinuous
across F and by ψc,F , we denote the side–average capillary pressure that corresponds to the
triangle with lower entry pressure. Altogether, the following side-average potentials ψc,K1,E and
ψc,K2,E are used in the expression for the side-velocities in (4.28):

ψc,K1,E =

{
pd,K1 − (ρn − ρw)

∫
E

g·x dx, if pc,K2,E < pd,K1 ,

ψc,E , otherwise,
(4.30a)

ψc,K2,E =

{
pd,K2 − (ρn − ρw)

∫
E

g·x dx, if pc,K1,E < pd,K2 ,

ψc,E , otherwise.
(4.30b)

We approximate the cell–average capillary potential ψc,K using its definition (1.47) as

ψc,K =
1

|K|d

∫

K

ψc (4.31a)

=
1

|K|d

∫

K

[pc − (ρn − ρw)g·x] (4.31b)

≈ pc(Sw,K)− (ρn − ρw)

∫

K

g·x, (4.31c)

where Sw,K is the cell–average of the wetting-phase saturation Sw. Therefore, the cell–average
capillary potential ψc,K can be directly computed for a given Sw,K using (4.31c).

External Sides

In case of the exterior (boundary) sides E ∈ Eexth , we prescribe either the Neumann boundary
condition (if E ⊆ Γun ∩ Γuw) as

uc,K,E =: uNc,K,E =





0 if uNw,E = uNn,E = 0,

−uNw,E if uNn,E = 0,

uNn,E if uNw,E = 0,

f−1
n (SDw,E)uNn,E − f−1

w (SDw,E)uNw,E otherwise,

(4.32)

or the Dirichlet boundary condition for the side-average of the capillary potential ψc,E as

ψc,E = ψc(S
D
w ), if E ⊆ ΓSw or E ⊆ ΓSn . (4.33)

In (4.33), the element index K in ψc,K,E is dropped out for all E ∈ EK ∩ Eexth . By Γψc , we shall
denote segments of the domain boundary such that the boundary condition (4.33) is prescribed.
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domain
boundary

∂Ω

E

F

G

H

I

K1

K2

uK1,E
uK1,H

uK1,F

uK2,E

uK2,I = uNI

uK2,G

Figure 4.2.: Continuity of normal components of a velocity u expressed in RT0(K1) and RT0(K2)
spaces, respectively, between two neighboring triangles K1 and K2. Additionally, the Neumann
boundary condition is illustrated at side I ∈ Eexth ∩ EK2

.

System of Linear Equations

Combining equations (4.28) and the boundary conditions (4.32) and (4.33), we obtain a sparse
system of linear equations that can be written in a matrix form as

McΨc = bc, (4.34)

where the square, symmetric, and positive definite matrix Mc and the vectors Ψc and bc have
dimensions #Eh, where #Eh denotes the total number of sides in Eh. The components of the
vector Ψc are the side average potentials defined in the previous section, i.e., dΨceE = ψc,E for
all E ∈ Eh.

For all interior sides E ∈ E inth ∩ EK1 ∩ EK2 , the entries of Mc are given by

dMceE,F = λt,K1aK1,E,F + λt,K2aK2,E,F , (4.35a)

if F = E and the barrier effect is not simulated at side E, i.e., the capillary potential ψc is
continuous across side E,

dMceE,F = λt,K1aK1,E,F , (4.35b)

if F ∈ EK1 , F /∈ EK2 , and F * Γψc , or if the barrier effect is simulated at side E and
pc,K1,E < pd,K2,E ,

dMceE,F = λt,K2aK2,E,F , (4.35c)

if F ∈ EK2 , F /∈ EK1 , and F * Γψc , or if the barrier effect is simulated at side E and
pc,K2,E < pd,K1,E . Otherwise,

dMceE,F = 0. (4.35d)

For all exterior (boundary) sides E ∈ Eexth ∩ EK1 , the entries of Mc are given by

dMceE,F =





λt,K1aK1,E,F , if F ∈ EK1 , F * Γψc , and E ⊆ Γuw ∩ Γun ,
1, if F = E and E ⊆ Γψc ,
0, otherwise .

(4.36)
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To simplify the notation, we split the right–hand–side vector bc in (4.34) into three parts

bc = bF
c + b♠c + b♣c . (4.37)

The components of the vector bF
c read as

⌈
bF
c

⌉
E

=





λt,K1aK1,E + λt,K2aK2,E , if E ∈ E inth ∩ EK1 ∩ EK2and
pc,K1,E , pc,K2,E ≥ max{pd,K1,E , pd,K2,E},

λt,KaK,E − uNc,K,E , if E ∈ Eexth ∩ EK and E ⊆ Γuw ∩ Γun

ψDc,E , if E ∈ Eexth and E ⊆ Γψc .

(4.38)

The vector b♠c contains the terms with the Dirichlet boundary condition for ψc,

⌈
b♠c
⌉
E

=





− ∑
K=K1,K2

∑
F∈EK∩Γψc

λt,KaK,E,Fψ
D
c,F , if E ∈ E inth ∩ EK1 ∩ EK2and

pc,K1,E , pc,K2,E ≥ max{pd,K1,E , pd,K2,E},
− ∑
F∈EK∩Γψc

λt,KaK,E,Fψ
D
c,F , if E ∈ Eexth ∩ EK and E * Γψc ,

0, otherwise .
(4.39)

The value of the vector b♣c is zero except for the case when the expression of the continuity of
uc,K1,E and uc,K2,E across the side E in (4.28) requires ψc,F at a side F 6= E, where the barrier
is simulated. Let K1 and K2 be the neighboring elements of E, i.e., E ∈ EK1 ∩ EK2 . Let us
assume without loss of generality that F ∈ EK1 ∩EK3 and F /∈ EK2 , where K3 denotes the other
neighboring element of F (see Figure 4.3). If K1 contains finer material than K3 and the barrier
effect is simulated, i.e., if pc,K3 < pd,K1 , we set

⌈
b♣c
⌉
E

= −λt,K1aK1,E,F


pd,K1 − (ρn − ρw)

∫

E

g·x dx


 . (4.40)

Otherwise,
⌈
b♣c
⌉
E

= 0.

material
interface

coarse
sand

fine
sand

E

F

K2

K1

K3

Figure 4.3.: Illustration of a situation with barrier effect at side F ∈ EK1
∩ EK3

when treating
continuity of normal fluxes across side E ∈ EK1

∩ EK2
.

4.1.3. Discretization of Volumetric Balance Equation

In order to express ua,K,E given by (4.22) in terms of the side–average variables ψw,E and ψc,E ,
we derive an explicit formula for the cell-average of the wetting phase potential ψw,K . We
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integrate the volumetric balance equation (4.1) for the total velocity ut over K ∈ Kh,
∫

K

∇·(ua + fnuc) =

∫

K

Fw + Fn, (4.41)

and by using the divergence theorem, we get

∑

F∈∂K

∫

F

(ua + fnuc)·nK,F = FK , (4.42)

where FK is the right–hand–side of (4.41). Since we approximate the fluxes ua and uc in
RT0(K), the properties of the basis functions (4.10) allow to rewrite (4.42) as

∑

E∈EK
ua,K,E +

∑

E∈EK
fn,E uc,K,E = FK , (4.43)

where fn,E is the side–average value of the non-wetting phase fractional flow function. Generally,
we use either the centered approximation denoted by favgn,E , or the upwinded approximation fupwn,E .

The centered fractional flow function favgn,E is always obtained by an arithmetic average as

favgn,E =





1
2 [fn(Sw,K1,E) + fn(Sw,K2,E)] if E ∈ E inth ∩ EK1 ∩ EK2 ,
fn(SDw,E) if E ∈ Eexth ∩ EK and E ⊆ ΓSw ,

fn(Sw,K,E) if E ∈ Eexth ∩ EK and E * ΓSw .

(4.44)

The upwinded fractional flow function fupwn,E depends on the direction of the side–flux uc across

E ∈ E inth ∩ EK1 ∩ EK2 and is determined as follows:

fupwn,E =

{
fn(Sw,K1,E), if uc,K1,E ≥ 0,
fn(Sw,K2,E), otherwise.

(4.45)

In case of the exterior side E ∈ Eexth ∩ EK , the upwinded fractional flow function is given by

fupwn,E =

{
fn(SDw,E), if uc,K,E ≤ 0 and E ⊆ ΓSw ,

fn(Sw,K,E), otherwise.
(4.46)

Replacing the side fluxes ua,K,E in (4.43) by (4.22), we obtain

λt,K aK ψw,K − λt,K
∑

E∈EK
aK,E ψw,E = FK −

∑

E∈EK
fn,E uc,K,E , (4.47)

where
aK =

∑

E∈EK
aK,E . (4.48)

Finally, we write ψw,K as

ψw,K =
FK

λt,K aK
+
∑

E∈EK

aK,E
aK

ψw,E −
∑

E∈EK

fn,E
λt,K aK

uc,K,E , (4.49)

which allows to express the side fluxes ua,K,E given by (4.22) in terms of the unknowns ψw,E
only

ua,K,E =
aK,E
aK


FK −

∑

F∈EK
fn,F uc,K,F


+ λt,K

∑

F∈EK

(
aK,EaK,F

aK
− aK,E,F

)
ψw,F , (4.50)
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4.1.4. System of Equations for Wetting-Phase Potentials

Internal Sides

Similarly to the derivation presented in Section 4.1.2, we consider two neighboring elements K1

and K2 shown in Figure 4.2. The continuity of the normal components of the phase velocities
across internal sides allows us to establish equation

ua,K1,E + ua,K2,E = 0, (4.51)

for all E ∈ E inth , E ∈ EK1 ∩ EK2 . We use (4.50) in order to express (4.51) in terms of the
side-average potentials ψw,F :

aK1,E

aK1


FK1 −

∑

F∈EK1

fn,F uc,K1,F


+ λt,K1

∑

F∈EK1

(
aK1,EaK1,F

aK1

− aK1,E,F

)
ψw,F +

+
aK2,E

aK2


FK2 −

∑

F∈EK2

fn,F uc,K2,F


+ λt,K2

∑

F∈EK2

(
aK2,EaK2,F

aK2

− aK2,E,F

)
ψw,F = 0.

(4.52)

In (4.52) we assume that the capillary velocities uc,K,F have been already computed using the
procedure described in Section 4.1.2.

External Sides

In case of the exterior (boundary) sides E ∈ Eexth , we prescribe either the Neumann boundary
condition (if E ⊆ Γun ∩ Γuw) as

ua,K,E =: uNa,K,E =

{
0 if uNw,E = 0,

f−1
w (SDw,E)uNw,E otherwise,

(4.53)

or the Dirichlet boundary condition for the side-average of the wetting-phase potential ψw,E as

ψw,E = ψDw , if E ⊆ Γψw . (4.54)

System of Linear Equations

Combining equations (4.52) and the boundary conditions (4.53) and (4.54), we obtain a sparse
system of linear equations that can be written in the matrix form as

MaΨw = ba, (4.55)

where the square matrix Ma and the vectors Ψw and ba have dimensions #Eh. Similar
to the matrix Mc, the matrix Ma is symmetric, positive definite, and for all interior sides
E ∈ E inth ∩ EK1 ∩ EK2 , its entries are given by

dMaeE,F =





∑
K=K1,K2

λt,K

(
a2K,E
aK
− aK,E,E

)
, if F = E,

λt,K1

(
aK1,E

aK1,F

aK1
− aK1,E,F

)
, if F ∈ EK1 , F /∈ EK2 , and F * Γψw ,

λt,K2

(
aK2,E

aK2,F

aK2
− aK2,E,F

)
, if F ∈ EK2 , F /∈ EK1 , and F * Γψw ,

0, otherwise

(4.56)
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and for all exterior (boundary) sides E ∈ Eexth ∩ EK by

dMaeE,F =

{
λt,K

(
aK,EaK,F

aK
− aK,E,F

)
, if F ∈ EK1 and E ⊆ Γuw ∩ Γun ,

1, if F = E and E ⊆ Γψw .
(4.57)

To simplify the notation, we split the right–hand–side vector ba in (4.55) into two parts

ba = bF
a + b♠a . (4.58)

The components of the vector bF
a read as

⌈
bF
a

⌉
E

=





− ∑
K=K1,K2

aK,E
aK

(
FK −

∑
F∈EK

fn,F uc,K,F

)
,

if E ∈ E inth ∩ EK1 ∩ EK2 ,

uNa,K,E −
aK,E
aK

(
FK −

∑
F∈EK

fn,F uc,K,F

)
,

if E ∈ Eexth ∩ EK and E ⊆ Γuw ∩ Γun ,
ψDw,E , if E ∈ Eexth and E ⊆ Γψw .

(4.59)

The vector b♠a contains the terms with the Dirichlet boundary condition for ψw,

⌈
b♠a
⌉
E

=





− ∑
K=K1,K2

∑
F∈EK∩Γψw

λt,K

(
aK,EaK,F

aK
− aK,E,F

)
ψDw,F ,

if E ∈ E inth ∩ EK1 ∩ EK2 ,

− ∑
F∈EK∩Γψw

λt,K

(
aK,EaK,F

aK
− aK,E,F

)
ψDw,F ,

if E ∈ Eexth ∩ EK and E * Γψw ,
0, otherwise .

(4.60)

4.1.5. Saturation Approximation

We discretize the saturation equation (4.7) using the discontinuous Galerkin (DG) method which
is locally conservative and flexible for complex unstructured geometries. The DG method ap-
proximates the weak solution Sw = Sw(t,x) of (4.7) by an approximation that belongs to
a functional space Dr(Kh) of discontinuous functions containing functions that are piecewise
polynomial of degree r ≥ 0 on K ∈ Kh,

Dr(Kh) =
{
p ∈ L2(Ω); p|K ∈ Pr(K),∀K ∈ Kh

}
, (4.61)

[103], [4]. Note that there is no continuity requirements across the internal sides of Kh.

We shall work with piecewise constant or piecewise linear functions per element K ∈ Kh such
that the approximated weak solution is in D0(Kh) or D1(Kh), respectively. Recall that we
assume that Kh consists of segments (in 1D) or triangles (in 2D) only.

Variational Approximation of Saturation

In order to obtain the variational formulation of the continuity equation, we multiply (4.7) by
a test function ϕ ∈ Dr(Kh) and integrate over Ω:

∫

Ω

φ
∂Sw
∂t

ϕ+

∫

Ω

∇·(fwua)ϕ =

∫

Ω

Fwϕ. (4.62)
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In (4.62) we assume that the porosity Φ is constant on each K ∈ Kh and we denote its value by
φK .

The approximation Sw ∈ Dr(Kh) of (4.7) satisfies (4.62) for all test functions ϕ ∈ Dr(Kh). In
the following subsections, we describe basis functions of D0(Kh) and D1(Kh) and we express the
weak solution Sw in these bases, respectively.

Piecewise Constant Approximation (FVM)

Using a piecewise constant approximation of the wetting-phase saturation Sw ∈ D0(Kh), the
discontinuous Galerkin method coincides with the cell-centered finite volume method (FVM).
Thus, the basis functions ϕK of D0(Kh) read as

ϕK(x) =

{
1 if x ∈ K,
0 otherwise.

(4.63)

The approximation of the wetting–phase saturation reads as

Sw(t,x) ≈
∑

K∈Kh
Sw,K(t)ϕK(x), (4.64)

for all x ∈ Ω and t ∈ (0, T ). In (4.64) the basis coefficients Sw,K are time-dependent and
represents the mean value of Sw over K (FVM). Using ϕK as test functions in (4.62) together
with the expression of Sw in D0(Kh) (4.64), we obtain

φK
dSw,K

dt
|K|d +

∫

K

∇·(fwua) =

∫

K

Fw, (4.65)

for all elements K ∈ Kh. Furthermore, we denote the average of the sink/source term as follows

Fw,K =
1

|K|d

∫

K

Fw. (4.66)

We use the divergence theorem in (4.65) and the properties of the approximation ua ∈ RT0(K)
to obtain

φK
dSw,K

dt
= Fw,K −

1

|K|d
∑

E∈EK
ua,K,E

∑

G∈EK

∫

G

fw wK,E ·nK,G, (4.67a)

= Fw,K −
1

|K|d
∑

E∈EK
ua,K,E

1

|E|d-1

∫

E

fw, (4.67b)

= Fw,K −
1

|K|d
∑

E∈EK
fw,E ua,K,E , (4.67c)

where fw,E denotes the average of the fractional flow function fw over the side E.

Piecewise Linear Approximation

By ϕK,E , we denote the piecewise linear basis functions of D1(Kh) associated with the edges for
all K ∈ Kh and E ∈ EK . In Appendix A, we describe explicit formulae for ϕK,E in R1 and R2.
The approximated solution reads as

Sw(t,x) ≈
∑

K∈Kh

∑

E∈EK
Sw,K,E(t)ϕK,E(x), (4.68)
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for all x ∈ Ω and t ∈ (0, T ), where the basis coefficients Sw,K,E are time-dependent.

The basis functions ϕK,E ∈ D1(Kh) fulfill

supp ϕK,E ⊆ K, (4.69a)

1

|F |d-1

∫

F

ϕK,E = δE,F , (4.69b)

1

|K|d

∫

K

ϕK,E =
1

d+ 1
, (4.69c)

for all K ∈ Kh and all E,F ∈ EK .

Using ϕK,E as test functions in (4.62) together with the expression (4.68), we obtain

φK
∑

F∈EK

dSw,K,F
dt

∫

K

ϕK,E ϕK,F +

∫

K

∇·(fwua)ϕK,E =

∫

K

Fw ϕK,E , (4.70)

for all elements K ∈ Kh. In order to simplify the notation of (4.70), we introduce

BK,E,F =

∫

K

ϕK,E ϕK,F , (4.71a)

Fw,K,E =

∫

K

Fw ϕK,E . (4.71b)

As a result of the properties of the basis functions ϕK,E in (4.69), coefficients

BK = {BK,E,F }E,F∈EK (4.72)

form a symmetric and positive definite matrix BK and by

bK = {bK,E,F }E,F∈EK , (4.73)

we denote its inversion, i.e., bK = B−1
K . We apply the Green theorem to the second integral in

the right–hand–side of (4.70) and obtain

∫

K

∇·(fwua)ϕK,E =
∑

H∈EK

∫

H

fwϕK,Eua ·nK,H −
∫

K

fwua ·∇ϕK,E . (4.74)

In the first integral on the right–hand–side of (4.74), we approximate the fractional flow function
fw in D1(K) as

fw ≈
∑

E∈EK
fw,EϕK,E , in K, (4.75)

where fw,E denotes the side-average of fw over E ∈ Eh. In the other integral on the right–hand–
side of (4.74), we approximate fw by its element-average value fw,K . Additionally, we use the
expression for the velocity ua ∈ RT0(K) in (4.74) and we get

∫

K

∇·(fwua)ϕK,E ≈
∑

H,G,F∈EK
ua,K,Gfw,F

∫

H

ϕK,FϕK,EwK,G ·nK,H −

−fw,K
∑

G∈EK
ua,K,G

∫

K

wK,G ·∇ϕK,E .
(4.76)
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Using (4.69) and the properties of the basis functions wK,E ∈ RT0 given by (4.10), we simplify
(4.76) into

∫

K

∇·(fwua)ϕK,E ≈
∑

H,F∈EK
fw,Fua,K,HIK,H,E,F −

fw,K
∑

G∈EK
ua,K,G

∫

K

wK,G ·∇ϕK,E ,
(4.77)

where

IK,H,E,F =
1

|H|d-1

∫

H

ϕK,FϕK,E . (4.78)

We evaluate the integral on the right–hand–side of (4.77) using the Green theorem and the
properties of the RT0(K) and D1(K) basis functions wK,E and ϕK,E , respectively:

∫

K

wK,G ·∇ϕK,E =
∑

H∈EK

∫

H

ϕK,EwK,G ·nH −
∫

K

ϕK,E∇·wK,G, (4.79a)

=
1

|G|d-1

∫

G

ϕK,E −
1

|K|d

∫

K

ϕK,E , (4.79b)

= δEG −
1

d+ 1
. (4.79c)

Altogether, the expression (4.77) reads as
∫

K

∇·(fwua)ϕK,E ≈
∑

H,F∈EK
fw,Fua,K,HIK,H,E,F −

−fw,K


ua,K,E −

1

d+ 1

∑

G∈EK
ua,K,G


 .

(4.80)

Consequently, the weak formulation of the evolution equation for the saturation Sw is ap-
proximated in the form

φK
∑

F∈EK

dSw,K,F
dt

BK,E,F +
∑

H,F∈EK
fw,Fua,K,GIK,H,E,F −

−fw,K


ua,K,E −

1

d+ 1

∑

G∈EK
ua,K,G


 = Fw,K,E .

(4.81)

Using the inverse matrix B−1
K = bK , the time derivatives of Sw,K,E are explicitly given by the

following system of ordinary differential equations (ODE):

dSw,K,E
dt

=
1

φK

∑

H∈EK
bK,E,H

[
Fw,K,H +

∑

H,F∈EK
fw,Fua,K,GIK,H,E,F −

−fw,K


ua,K,E −

1

d+ 1

∑

G∈EK
ua,K,G



]
,

(4.82)

for all E ∈ Eh. Note that the matrix BK is a (d+ 1)× (d+ 1) matrix and thus the computation
of its inversion is cheap.
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D0(Ω) (FV) dSei = Sw,Ki i = 1, . . . ,#Kh
dFei = right-hand-side of (4.67c) for K = Ki

D1(Ω) (DG) dSe3(i−1)+j = Sw,Ki,Ej i = 1, . . . ,#Kh
dFe3(i−1)+j =

{ right-hand-side of (4.82)
for K = Ki and E = Ej

j = 1, 2, 3

Table 4.1.: Vector representation of the unknown wetting-phase saturations and the right-hand-
sides of (4.67c) and (4.82) using D0 (FV) and D1 (DG) approximations, respectively. The symbol
#Kh denotes the number of elements in Kh.

Side-Average of Fractional Flow Function

In most practical cases, we use the upwind technique to determine the value of the side-average
fractional flow function fw,E in (4.67c) and (4.82). The upwinded value, denoted by fupww,E ,

depends on the direction of the side–flux ua across E ∈ E inth ∩ EK1 ∩ EK2 and is determined as
follows:

fupww,E =

{
fw(Sw,K1,E), if ua,K1,E ≥ 0,
fw(Sw,K2,E), otherwise,

(4.83)

(compare to (4.45)). For the exterior sides E ∈ Eexth ∩EK , the upwinded fractional flow function
fupww,E is given by

fupww,E =

{
fw(SDw,E), if ua,K,E ≤ 0 and E ⊆ ΓSw ,

fw(Sw,K,E), otherwise.
(4.84)

Another possibility is to use the centered fractional flow function favgw,E given by

favgw,E =





1
2 [fw(Sw,K1,E) + fw(Sw,K2,E)] if E ∈ E inth ∩ EK1 ∩ EK2 ,
fw(SDw,E) if E ∈ Eexth ∩ EK and E ⊆ ΓSw ,

fw(Sw,K,E) if E ∈ Eexth ∩ EK and E * ΓSw .

(4.85)

It is known, however, that an explicit numerical scheme is unconditionally unstable for such
a choice of fw,E , when the flow is advection-dominated, [57], [74]. Later in Section 4.2.2, we
discuss the use of fupww,E and favgw,E for a pure diffusion problem.

4.1.6. Time Discretization of Saturation Equation

As a result of the discretization techniques in the previous sections, a system of ordinary dif-
ferential equations (ODEs) for the unknown saturation is derived and given by equations (4.67c)
or (4.82). We use the explicit Runge–Kutta (RK) methods to solve this system of ODEs. The
initial condition for the system of ODEs is given by the initial condition for the saturation (1.50).
In order to describe the RK methods used in this thesis for both piecewise constant and linear
discretizations, we use a general vector representation of the unknown discrete saturation. By
S = S(t) and F = F(t,S), we denote a vector of unknowns and a right–hand–side of the resulting
discretization of the saturation equation, respectively. In Table 4.1, we describe S and F(t,S)
in details for the case of piecewise constant (FV) and piecewise linear (DG) approximation of
Sw in 1D and 2D, respectively.

Consequently, (4.67c) or (4.82) can be written as

d

dt
S(t) = F(t,S(t)). (4.86)
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In order to solve the system of ordinary differential equations (4.86) numerically, we discretize
the time interval [0, T ] in the same way as in (3.2, page 37) by

TM = {0 = t0 < t1 < · · · < tM = T} (4.87)

and use an explicit Runge–Kutta method in the form

Si+1 = FRK(ti,∆ti,S
i), (4.88)

where the function FRK represents different choices of the Runge–Kutta methods, [112], [113].
In this thesis, we have tested either the first order forward Euler method in (4.88), where

FRK1 = Si + ∆tiF(ti,S
i), (4.89)

or the fourth order method

FRK4 = Si + ∆ti
1

6

(
C

(1)
RK4

+ 2C
(2)
RK4

+ 2C
(3)
RK4

+ C
(4)
RK4

)
, (4.90)

where the coefficients C
(j)
RK4

for j = 1, 2, 3, 4 are given by

C
(1)
RK4

= F
(
ti,S

i
)
, (4.91a)

C
(2)
RK4

= F

(
ti +

1

2
∆ti,S

i +
1

2
∆tiC

(1)
RK4

)
, (4.91b)

C
(3)
RK4

= F

(
ti +

1

2
∆ti,S

i +
1

2
∆tiC

(2)
RK4

)
, (4.91c)

C
(4)
RK4

= F
(
ti + ∆ti,S

i + ∆tiC
(3)
RK4

)
. (4.91d)

We investigated the convergence of the numerical scheme using the benchmark solutions for
both first and fourth order methods (4.89) and (4.90), respectively. However, the difference
in error norms between the forward Euler and the fourth–order Runge–Kutta methods was
negligible. Therefore, we present results obtained by using the forward Euler method (4.89)
only.

4.1.7. Slope Limiter

When using the higher–order approximation of the unknown functions in the discontinuous
Galerkin method, the numerical scheme produces non-physical oscillations near shocks, [62], [65].
These spurious oscillations can be avoided by reconstructing the approximated discontinuous
Galerkin solution using a slope limiter procedure. To stabilize the MHFE-DG numerical scheme,
we use the slope limiter introduced by Chavent and Jaffré, [15], in the form described in [62].

By Ši+1
w ∈ D1(Ω), we denote the solution of (4.88). On each element K ∈ Kh, we shall work

with a local slope limiting operator LK that modifies Ši+1
w ∈ D1(K) such that the approximation

of Sw on a new time level ti+1 is given by

Si+1
w = LK

(
Ši+1
w

)
. (4.92)

In order to satisfy an appropriate maximum principle, the limiting operator LK modifies the
gradient of Ši+1

w and preserves the mass in K, i.e.,

1

|K|d

∫

K

Si+1
w =

1

|K|d

∫

K

Ši+1
w , for all K ∈ Kh. (4.93)

77



4. A Higher–Order Scheme for Two-Phase Flow in Layered Media

Apparently, the average of Ši+1
w over K denoted by Ši+1

w,K can be used as the reconstructed so-

lution in (4.92) which gives the finite volume approximation of Si+1
w,K,E = Ši+1

w,K for all E ∈ EK
(MHFE-FV). However, the reconstructed solution should be modified as little as possible. There-
fore, we require that the reconstructed solution Si+1

w is the solution of the following least squares
problem with linear constraints:

‖Si+1
w − Ši+1

w ‖L2(K) = min
W∈D1(K)

‖W − Ši+1
w ‖L2(K), (4.94a)

1

|K|d

∫

K

Si+1
w =

1

|K|d

∫

K

Ši+1
w , (4.94b)

Smin
w,K,E ≤Sw,K,E ≤ Smax

w,K,E , for all E ∈ EK , (4.94c)

where

Smin
w,K,E = min

{
Si+1
w,K ;K ∈ NK,E

}
, (4.95a)

Smax
w,K,E = max

{
Si+1
w,K ;K ∈ NK,E

}
, (4.95b)

for all E ∈ EK . The set NK,E contains all neighboring elements of the side E (including K
itself):

NK,E = {L ∈ Kh;L ∩K = E} . (4.96)

A comprehensive algorithm for the least-squares minimization of (4.94) is given in [62]. By
LK

(
Ši+1
w

)
, we denote the optimal solution of (4.94) and set

Si+1
w,K,E =

[
LK

(
Ši+1
w

)]
E
, (4.97)

for all E ∈ EK . Although the limiting procedure is iterative, the algorithm in [62] is not expensive
from a computational point of view. On each element K ∈ Kh, the optimal solution is reached
with at most 2(d+1) steps. Note, that the limiting procedure needs to be applied after each step
of the Runge–Kutta methods, i.e., after (4.91a)–(4.91d) in case of the fourth-order Runge–Kutta
method (4.90).

4.1.8. Computational Algorithm

We summarize the complete computational algorithm for obtaining the numerical solution of
the two-phase flow system (1.49) using the MHFE-FV and MHFE-DG methods described in
previous sections.
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The computation proceeds in the following order:

1. For a given mesh Kh, compute the mesh-dependent coefficients aK,E,F , aK,E , and aK for
all K ∈ Kh and E,F ∈ EK .

2. At t = t0, use the initial condition (1.50) to initialize S0 = Sini.

3. Set i = 0, and choose an initial time step ∆t0.

4. Repeat the following steps until the predetermined final time T of the simulation is reached.

a) Compute the Runge–Kutta vector function FRK(ti,∆ti,S
i) using (4.89) or (4.90).

In the evaluation of FRK , use the following procedure of obtaining the value of the
right–hand–side vector function F(t,S) of the equation (4.86).

i. Based on a given saturation vector S, compute the cell-average capillary pressure
potentials ψc,K for all K ∈ Kh using (4.31c).

ii. Assemble matrix Mc given by (4.35) and (4.36).

iii. Assemble right–hand–side vector bc given by (4.37).

iv. Solve (4.34): McΨc = bc.

v. Compute qc,K,E for all K ∈ Kh and E ∈ EK using (4.25).

vi. Assemble matrix Ma given by (4.56) and (4.57).

vii. Assemble right–hand–side vector ba given by (4.58).

viii. Solve (4.55): MaΨw = ba.

ix. Compute qa,K,E for all K ∈ Kh and E ∈ EK using (4.50).

x. Evaluate the right–hand–side vector function F using (4.67c) or (4.82).

b) If the MHFE-DG scheme is used together with the fourth order Runge–Kutta method,
apply the slope limiting procedure (4.97) after each evaluation of the Runge-Kutta
coefficients in (4.91).

c) Set Si+1 = FRK(ti,∆ti,S
i).

d) If the MHFE-DG scheme is used, apply the slope limiting procedure (4.97).

e) Use the following heuristic condition to determine spurious oscillations of the nume-
rical solution Si+1 on each K ∈ Kh.

i. Determine the maximal and minimal cell-average values of the wetting-phase sa-
turation on the previous time level Si,min

w,K and Si,max
w,K over all neighboring elements

of K including the element K itself.

ii. Compute the cell-average value Si+1
w,K on a new time level.

iii. If Si+1
w,K < (1 − εtol)S

i,min
w,K or Si+1

w,K > (1 + εtol)S
i,max
w,K , decrease the time step

∆ti := ∆ti/ζ∆t and restart the Runge–Kutta time step (4.a). If such a condition
is not satisfied, divide the time step ∆ti by the time step modification factor
denoted by ζ∆t > 1 and restart the Runge-Kutta method on the current time
level t = ti.

f) Set ti+1 = ti + ∆ti.

g) If previous ζin steps were successful, set ∆ti+1 = ζ∆t∆ti, otherwise set ∆ti+1 = ∆ti.

h) Set i := i+ 1.

79



4. A Higher–Order Scheme for Two-Phase Flow in Layered Media

In steps 4.a.iv and 4.a.viii of the computational algorithm, a direct or an iterative linear solver
for sparse, symmetric, and positive definite matrices can be used. In this thesis, we use the LU
factorization method (direct solver) implemented in the package UMFPACK, [24], [25], [26], [27].
By εtol in the step 4.e.iii of the algorithm, we denote an arbitrary given tolerance that describes
the maximal admissible deviation of the cell-average Si+1

w,K from the minimal and maximal cell-

average values Si,min
w,K and Si,max

w,K on the previous time level over all neighboring elements of K

including K itself. Generally, we set ζin = 100, ζ∆t = 1.5, and εtol = 10−3.

4.2. Verification of Numerical Scheme in Homogeneous Medium

The correctness and accuracy of the MHFE-DG numerical scheme will be verified by means of
the same benchmark problems as in Section 3.2. Additionally, our aim is to determine pros
and cons of the MHFE-DG and the fully-implicit VCFVM method used in Chapter 3. For that
sake, we compare absolute values of the L1 and L2 error norms as a function of the number
of nodes N since both methods involve resolution of several linear systems of equations with
a N×N matrix. In all benchmark problems, we compare experimental orders of convergence for
numerical solutions obtained using the piecewise constant (denoted as MHFE-FV) and linear
(denoted as MHFE-DG) approximations, respectively.

In each benchmark problem I.–III., water is displaced by air in a one-dimensional horizontally
placed tube due to an imposed flux at the boundary. We assume zero gravity (g = 0) and
no dynamic effect in capillarity (τ = 0). We select the final time T such that the front of the
benchmark solution stays inside the domain Ω = (0, 1).

4.2.1. Benchmark I: Pure Advection

As in Section 3.2.1, we start with the pure advection benchmark problem (2.14) with S0 = 0.265
(residual water saturation), Si = 1 (maximal water saturation), and uT (t) = 10−4 ms−1.

In the MHFE-FV and MHFE-DG numerical schemes, we set Siniw = Si = 1 and at the inlet
(x = 0), we prescribe the Neumann boundary condition as uNn (t, 0) = uT (t) and ψDw (t, 0) = 0 Pa.
We choose the final time T = 1000 s so that the front of the analytical solution stays inside
Ω. In Figure 4.5, we compare the numerical solutions computed on a regular mesh with mesh
size h = 1/4 cm to the Buckley and Leverett analytical solution and also to the numerical
solution using VCFVM for the same degrees of freedom. The saturation profile obtained using
the MHFE-DG method contains substantially less numerical diffusion that the VCFVM and
the MHFE-DG approximation of Sn for h = 1/2 cm (c.f. Figure 4.5a) is even more accurate
than the VCFVM approximation computed on a two times refined mesh with h = 1/8 cm (c.f.
Figure 4.5c).

The experimental orders of convergence (eoc) shown in Table 4.2 indicate that both the
MHFE-FV and MHFE-DG methods converge with a slightly higher order than the VCFVM
(the ratio ∆t/h is kept constant). However, the difference between the piecewise constant D0

(MHFE-FV) and piecewise linear D1 (MHFE-DG) approximations is negligible and absolute
values of their error norms are almost identical for denser meshes (c.f. Figure 4.4). Compared
to the VCFVM method in Figure 4.4, the L1 or L2 error norms are more than two times better
using the same number of nodes.
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eoc1 eoc2

h1 → h2 [cm] M
H

F
E

-F
V

M
H

F
E

-D
G

V
C

F
V

M

M
H

F
E

-F
V

M
H

F
E

-D
G

V
C

F
V

M

2→ 1 0.93 0.91 0.62 0.52 0.48 0.38
1→ 1/2 0.77 0.75 0.77 0.43 0.38 0.39

1/2→ 1/4 0.92 0.91 0.75 0.52 0.50 0.36
1/4→ 1/8 0.78 0.77 0.80 0.42 0.40 0.4
1/8→ 1/16 0.90 0.89 0.83 0.49 0.49 0.41
1/16→ 1/32 0.92 0.91 0.85 0.51 0.51 0.43

Table 4.2.: Experimental orders of convergence eoc1 and eoc2 computed for Benchmark Problem I
in L1 and L2 norms, respectively. Comparison between the MHFE-FV, MHFE-DG, and VCFVM
method. The ratio ∆t/h is kept constant for each case.
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Figure 4.4.: Absolute values of the L1 and L2 error norms computed for Benchmark Problem I.
Comparison between the MHFE-FV, MHFE-DG, and VCFVM method.
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Figure 4.5.: Numerical solutions compared to the Buckley and Leverett analytical solution;
t = 1000 s, h = 1/2, 1/4, and 1/8 cm, ∆t/h = 1/5 is kept constant.
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4.2.2. Benchmark II: Pure Capillarity in Homogeneous Medium

As a second benchmark problem, we use the pure diffusion problem formulation (2.32) with
R = 0, S0 = 0.5, and Si = 1, i.e., we simulate a one-dimensional counter–current flow.

In the MHFE-FV and MHFE-DG numerical schemes, we set Siniw = Si = 1 and prescribe the
following boundary conditions. At the inlet (x = 0), we set the Dirichlet boundary condition
for SDw (t, 0) = S0 = 0.5 and ψDw (t, 0) = 0 Pa and at x = 1 m, we impose zero Neumann
boundary velocities uNn (t, 1) = uNw (t, 1) = 0 ms−1. By choosing the final time of the simulation
as T = 15000 s, we assure that the air-front stays inside Ω during the simulation. We compute
numerical solutions on a series of regular meshes with decreasing mesh sizes h and compare
them to the McWhorter and Sunada semi-analytical solution and also to the VCFVM method
in Figure 4.6. The ratio ∆t/h2 is kept constant.

Once the flow is driven by capillarity only, we can use both upwinding ((4.45) and (4.83)) or
central averaging ((4.44) and (4.85)) technique to approximate fractional flow function fn and fw
on a side E ∈ Eh, respectively. In Table 4.3, we present the experimental orders of convergence
eoc computed for the MHFE-FV and MHFE-DG numerical scheme. In the piecewise linear
case (MHFE-DG), we use either upwinding or central averaging techniques. As follows from the
comparison in Table 4.3 of the experimental order of convergence of the MHFE-DG method and
the VCFVM discussed in Section 3.2.2, the upwinding technique leads to a first order numerical
scheme. The central averaging technique exhibits higher order of convergence for coarse meshes,
however, eoc collapses substantially as we increase the number of nodes. This is caused by the
slope-limiting technique used to stabilize the numerical scheme (see Section 4.1.7). The slope
limiter is mainly applied to the front of the numerical solution which, in the present case, is
placed in the second half of the domain Ω, i.e., in [0.5, 1], see Figure 4.6. In order to determine
the experimental order of convergence without being affected by the limiting procedure, we
measure the error norms of the numerical solutions in the first half of Ω, i.e., in [0, 0.5], only.
The resulting experimental orders of convergence in Table 4.4 show that the MHFE-DG method
with central averaging technique converges with the order of convergence 2, whereas the rest
of the numerical methods that are using the upwinding technique converges with the order of
convergence 1. Despite the distortion of the eoc by the limiting procedure, the absolute error
norms measured in the whole domain Ω are substantially better when using the central averaging
technique, cf. the black line in Figure 4.7.
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Figure 4.6.: Numerical solution of the pure diffusion McWhorter and Sunada problem in a homo-
geneous porous medium; t = 15000 s, h = 1 cm, and ∆t = 0.1 s.
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2→ 1 0.84 0.36 1.93 0.93 0.73 0.59 1.83 0.74
1→ 1/2 0.89 0.70 1.70 0.93 0.74 0.68 1.59 0.76

1/2→ 1/4 0.92 0.82 1.35 0.89 0.76 0.70 1.21 0.66
1/4→ 1/8 0.92 0.86 0.85 0.88 0.73 0.70 0.78 0.75
1/8→ 1/16 0.92 0.85 0.34 0.80 0.77 0.74 0.15 0.74

Table 4.3.: Experimental orders of convergence eoc1 and eoc2 computed for Benchmark Problem II
in L1 and L2 norms, respectively. Comparison between the MHFE-FV, MHFE-DG, and VCFVM.
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2→ 1 0.88 0.18 2.02 0.90 0.88 0.19 2.01 0.91
1→ 1/2 0.93 0.65 1.95 0.94 0.93 0.66 1.95 0.95

1/2→ 1/4 0.96 0.82 1.94 0.97 0.96 0.83 1.93 0.97
1/4→ 1/8 0.97 0.91 1.94 0.98 0.97 0.91 1.94 0.98
1/8→ 1/16 0.98 0.95 1.94 0.98 0.98 0.95 1.94 0.99

Table 4.4.: Experimental orders of convergence eoc1 and eoc2 computed in L1 and L2 norms, respec-
tively, for Benchmark Problem II using only first half of the domain Ω, i.e., [0, 0.5]. Comparison
between the MHFE-FV, MHFE-DG, and VCFVM.
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Figure 4.7.: Absolute values of the L1 and L2 error norms computed for Benchmark Problem II.
Comparison between the MHFE-FV, MHFE-DG, and VCFVM.
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2→ 1 0.87 0.78 0.68 0.52 0.48 0.34
1→ 1/2 0.98 0.91 0.74 0.71 0.75 0.47

1/2→ 1/4 0.99 0.92 0.76 0.77 0.89 0.55
1/4→ 1/8 0.99 0.83 0.85 0.83 1.04 0.61
1/8→ 1/16 0.91 0.53 0.87 1.12 1.32 0.7

Table 4.5.: Experimental orders of convergence eoc1 and eoc2 computed for Benchmark Problem III
in L1 and L2 norms, respectively. Comparison between the MHFE-FV, MHFE-DG, and VCFVM.

4.2.3. Benchmark III: Advection and Diffusion in Homogeneous Medium

Third, we test both advection and diffusion by means of the McWhorter and Sunada problem
formulation (2.32) withR = 0.92, S0 = 0.5 and Si = 1. We use (2.48) to compute the McWhorter
and Sunada input flux rate parameter A. For the selected parameters S0 and R, A = 1.53 ·
10−3 ms−

1
2 .

In the MHFE-FV and MHFE-DG numerical schemes, we set Siniw = Si = 1. At the inlet

(x = 0), we prescribe the air and water Neumann boundary velocities to uNn (t, 0) = At−
1
2 and

uNw (t, 0) = (R− 1)At−
1
2 , respectively. At the outlet (x = 1 m), we set uNw (t, 1) = RAt−

1
2 ms−1

and SDw (t, 1) = Si = 1. We choose the final time T = 1000 s so that the air-front stays inside
Ω. We compute the numerical solutions on a series of regular meshes with decreasing mesh
sizes and compare them to the semi-analytical solution in Figure 4.8. The ratio ∆t/h2 is kept
constant.

Similar to the previous cases, we compare the numerical solutions obtained on a series of
regular meshes with the McWhorter and Sunada semi-analytical solution. We present the eoc in
Table 4.5 and plot the absolute values of the error norms in Figure 4.9. In case of the advection
and diffusion driven flow, the MHFE-FV and MHFE-DG method converges with a slightly higher
order than the VCFVM, especially for the L2-norm.
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Figure 4.8.: Numerical solution of the advection–diffusion McWhorter and Sunada problem in
a homogeneous porous medium; t = 1000 s, h = 1 cm, and ∆t = 0.1 s.
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Figure 4.9.: Absolute values of the L1 and L2 error norms computed for Benchmark Problem III.
Comparison between the MHFE-FV, MHFE-DG, and VCFVM.

4.3. Simulation of Flow in Layered Media

In this thesis, one of our primary goals is to determine the correct treatment of the conditions at
material interfaces within the MHFE-DG numerical scheme which was not properly discussed in
the original paper [65]. First, we use Benchmark Problems IV and V to demonstrate convergence
of the numerical scheme in a one-dimensional layered medium in cases without the barrier
effect. Then, we discuss the simulation of the barrier effect using the test problem introduced
in Section 3.2.7 (Benchmark Problem VI) in both 1D and 2D.

4.3.1. Benchmark IV: Pure Diffusion in Layered Medium

Similar to Section 3.2.4, we consider the pure diffusion benchmark problem with a single material
discontinuity (2.56) with R = 0, SIi = 0.3, and SIIi = 1. The problem setup is sketched in
Figure 2.2b, page 23. We assume that Ω = (0, 1) is composed of two homogeneous subdomains
filled with sands A and B in ΩI = (0, 1/2) and ΩII = (1/2, 1), respectively, where sand B is finer
than sand A. The sand properties are shown in Tables B.2 and B.3 in Appendix B.

We set the following initial and boundary conditions. Initially, Sw(0, x) = 0.3 in ΩI and
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2→ 1 1.07 1.07 0.82 0.97 0.97 0.48
1→ 1/2 0.85 0.85 0.89 0.67 0.67 0.55

1/2→ 1/4 0.87 0.87 0.91 0.67 0.67 0.55
1/4→ 1/8 0.92 0.92 0.91 0.75 0.75 0.56
1/8→ 1/16 0.57 0.57 0.92 0.52 0.53 0.55
1/16→ 1/32 0.97 0.97 0.96 0.52 0.52 0.55

Table 4.6.: Experimental orders of convergence eoc1 and eoc2 computed for Benchmark Problem IV
in L1 and L2 norms, respectively. Comparison between the MHFE-DG and the fully-implicit
VCFVM method.

Sw(0, x) = 1 in ΩII . At x = 0, we prescribe SDw (t, 0) = 0.3 and a constant water pressure
ψDw (t, 0) = 0 Pa, while on the other boundary at x = 1, we set uNn (t, 1) = uNw (t, 1) = 0 ms−1.
We compute the numerical solutions on a series of meshes and compare them to the van Duijn
and de Neef semi-analytical solution and the VCFVM method, see Figure 4.11. The ratio ∆t/h2

is kept constant.

The experimental orders of convergence eoc shown in Table 4.6 indicate that both the MHFE-
DG and the VCFVM methods converge with the order of convergence 1 in L1 and 1/2 in L2.
No difference between the absolute error norms of the piecewise constant (MHFE-FV) and
piecewise linear (MHFE-DG) approximation is observed in Figure 4.10 which indicates that the
MHFE-DG (D1) solution is strongly influenced by the limiting procedure.
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Figure 4.10.: Absolute values of the L1 and L2 error norms computed for Benchmark Problem IV.
Comparison between the MHFE-DG and the fully-implicit VCFVM method.
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Figure 4.11.: Numerical solution of the pure diffusion problem in a layered porous medium;
t = 10000 s, h = 1 cm and ∆t = 1 s. Problem IV.
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2→ 1 0.81 0.81 0.47 0.55 0.55 0.29
1→ 1/2 0.87 0.87 0.99 0.62 0.62 0.58

1/2→ 1/4 0.93 0.93 1.12 0.72 0.72 0.67
1/4→ 1/8 0.91 0.91 1.12 0.63 0.63 0.73
1/8→ 1/16 0.92 0.92 1.04 0.63 0.63 0.65
1/16→ 1/32 0.91 0.91 1.01 0.60 0.60 0.64

Table 4.7.: Experimental orders of convergence eoc1 and eoc2 computed for Benchmark Problem V
in L1 and L2 norms, respectively. Comparison between the MHFE-FV, MHFE-DG, and VCFVM.

4.3.2. Benchmark V : Advection and Diffusion in Layered Medium

We consider the semi-analytical solution for the diffusion and advection driven flow in a porous
medium with a single material discontinuity (2.56) with R = 0.9, SIi = 0.3, and SIIi = 1.

In the numerical model, we consider the following initial and boundary conditions. Ini-
tially, Sw(0, x) = 0.3 in ΩI and Sw(0, x) = 1 in ΩII . At x = 0, we set SDw (t, 0) = 0.3
and ψD(t, 0) = 0 Pa. The boundary conditions at x = 1 read as uNn (t, 1) = 0 ms−1 and

uNw (t, 1) = RAt−
1
2 , where A = 5.61 ·10−4 ms−

1
2 . The numerical solutions compared to the semi-

analytical solution and the VCFVM method are shown in Figure 4.13. Again, the experimental
orders of convergence eoc in Table 4.7 and the absolute error norms in Figure 4.12 show that the
MHFE-DG method converges similarly as the VCFVM method and that the difference between
the piecewise constant and linear approximations is negligible.
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Figure 4.12.: Absolute values of the L1 and L2 error norms computed for Benchmark Problem V.
Comparison between the MHFE-FV, MHFE-DG, and VCFVM.
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t = 1000 s, h = 1 cm, and ∆t = 1 s. Problem V.
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4. A Higher–Order Scheme for Two-Phase Flow in Layered Media

4.3.3. Barrier Effect Test Problem in Layered Porous Medium

In this section, we simulate the layered medium Benchmark Problem VI introduced in Sec-
tion 3.2.7 to show that the barrier effect is simulated correctly by the MHFE-DG numerical
scheme. We consider a vertical column that consists of three sand layers combined of two differ-
ent sands denoted as Sand D and E (their properties are given in Tables B.5, respectively). Sharp
material interfaces are placed at x = 0.145 m and x = 0.345 m. We compute the numerical
solutions for both one- and two-dimensional cases.

The problem setup in 1D is sketched in Figure 3.7, page 47. At the inlet (x = 0),
a DNAPL denoted as NAPL A (c.f. Table B.1) flows into the domain with a constant rate
un(t, 0) = 3.57 · 10−5 ms−1 whereas the water velocity is zero. At the bottom of the column,
the maximal wetting-phase saturation Sw = 1 is prescribed and the water pressure is kept con-
stant at 2 · 105 Pa. The final time of the simulation is T = 1650 s. In Figure 4.15, we plot the
numerical solutions and compare them to the numerical solution obtained using the VCFVM
method on a very fine mesh with mesh size h = 5/1280. Additionally, we plot the VCFVM so-
lution on the same mesh (the dotted line in Figure 4.15) to show that the MHFE-DG method
contains less numerical diffusion and that the fronts are sharper. The numerical results show
a very good agreement with the results published in [57, page 275].

The two-dimensional setup of the same problem is shown in Figure 4.14a, where a rectangular
domain Ω of dimensions 0.5m× 0.5m is sketched. We use the following boundary conditions:

un ·n = −3.57 · 10−5 ms−1 and uw ·n = 0 on Γ1, (4.98a)

Sw = 1 and ψw = 2 · 105 + 4905 Pa on Γ3, (4.98b)

un ·n = 0 and uw ·n = 0 on Γ2 ∪ Γ4, (4.98c)

where n is the outer normal to the domain boundary. Initially, the column is fully water satu-
rated, i.e., Sw = 1 in Ω. The initial mesh is shown in Figure 4.14b. In order to show convergence
of the numerical simulations, the initial mesh is refined uniformly. In Figures 4.16 and 4.17, we
plot the numerical solution using the MHFE-FV and the MHFE-DG method, respectively. For
each mesh refinement, we compare the numerical solution on a slice x = 0.25 with the numerical
solution obtained using the VCFVM on a very fine mesh. In both situations, the numerical
solutions converge to the VCFVM solution whereas the piecewise linear approximation (MHFE-
DG) gives substantially better approximation of the solution. In case of coarse meshes (cf.
Figures 4.16a and 4.17a), the near-boundary irregularities of the front of the numerical solutions
are caused by the non-uniform triangulation of the domain. These effects vanish when finer
meshes are used (cf. Figures 4.16c and 4.17c).

Altogether, the MHFE-DG numerical solutions converge towards the VCFVM solution ob-
tained on a very fine mesh and the barrier effect is captured correctly in both 1D and 2D cases.
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Figure 4.14.: Setup and the initial mesh for the Benchmark Problem VI in a two-dimensional
space. Properties of the Sands E and D are given in Table B.5.
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Figure 4.15.: Comparison of the MHFE-FV and MHFE-DG method and the numerical solution
obtained using the VCFVM on a very fine mesh for the Benchmark Problem VI. The time step
∆t is chosen adaptively.
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Figure 4.16.: Numerical solutions of the Benchmark Problem VI using the MHFE-FV method in
2D. Slices of the numerical solution at x = 0.25 are compared to the numerical solution obtained
using the VCFVM in 1D on a very fine mesh. The time step ∆t is chosen adaptively.
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Figure 4.17.: Numerical solutions of the Benchmark Problem VI using the MHFE-DG method in
2D. Slices of the numerical solution at x = 0.25 are compared to the numerical solution obtained
using the VCFVM in 1D on a very fine mesh. The time step ∆t is chosen adaptively.
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4.4. Application of MHFE-DG Method in 2D Heterogeneous
Problems

In the final section of this chapter, we use the MHFE-FV and MHFE-DG methods to simulate
two-dimensional problems in heterogeneous porous media. We use two textbook problems pub-
lished in [57] to demonstrate reliability and accuracy of the MHFE-FV and MHFE-DG methods
in Subsections 4.4.1 and 4.4.2. In the last Subsection 4.4.3, we simulate a laboratory experiment
involving a light NAPL in a layered porous medium with an inclined material interface and
compare the results of the numerical solutions to the experimental data.

4.4.1. Low Permeable Lens in a Sandbox

A typical test problem in a two-dimensional layered medium is the DNAPL contamination
problem of a vertically-placed sandbox illustrated in Figure 4.18a. The domain Ω is composed
of a box with a rectangular lens. The lens is filled with sand G which is finer than the sand
F in the rest of the box. In the lens, we shall consider sand G1 or G2 with different values of
the entry pressure (see Table B.6, page 125) in order to simulate cases, where the non-wetting
phase can or cannot enter the lens, respectively.

Initially, the domain is fully water saturated and at t = 0, the DNAPL trichloroethylene
(TCE, see Table B.1) starts to flow with a constant flow rate through Γ1. Boundaries Γ2, Γ4,
and Γ6 are considered impermeable and a hydrostatic water pressure (therefore constant ψw) is
prescribed on Γ3 and Γ5, i.e.,

un ·n = −5.13 · 10−5 ms−1 and uw ·n = 0 on Γ1, (4.99a)

Sw = 1 and ψw = 105 Pa on Γ3 ∪ Γ5, (4.99b)

un ·n = 0 and uw ·n = 0 on Γ2 ∪ Γ4 ∪ Γ6, (4.99c)

where n denotes the outer normal to the domain boundary. We compute the numerical so-
lutions on a series of six meshes with an increasing number of triangles. The coarsest mesh
shown in Figure 4.18b contains 1225 triangles and the finest mesh consists of 42112 triangles.
To illustrate the difference between the piecewise constant (MHFE-FV) and piecewise linear
(MHFE-DG) approximations of Sw, we plot a one-dimensional slice x = 0.45 for each of the
numerical solutions.

First, we simulate the case with a lower permeable lens filled with sand G1. In Figures 4.19
and 4.20, we plot numerical results obtained using the MHFE-FV and the MHFE-DG method,
respectively. In both cases, the sharp front of the final solution at t = 4500 s is captured
correctly even on the coarse mesh (case (a)). Comparing the one-dimensional slices x = 0.45 in
cases (a), (b), and (c), we observe the convergence of the numerical solutions and also a good
agreement with the results published in [58] and [57].

In the second case, we simulate a situation, where the DNAPL pools on top of the lower
permeable lens filled with sand G2. The sand G2 has a higher entry pressure than G1. During
the simulation, the capillary pressure of the DNAPL pooled at the material interface does not
attain the required entry pressure pd of the sand G2. Therefore, it does not penetrate the low-
permeable lens as shown in Figure 4.21 and 4.22 for the MHFE-FV and the MHFE-DG methods,
respectively. Again, the distributions of Sw at t = 4500 s exhibit a good agreement with the
results published in [58] and [57].

The comparison between the MHFE-FV and the MHFE-DG methods is shown in Figures 4.23
and 4.24 using contours of the numerical solutions given in Figures 4.19–4.22. All contour lines
corresponding to the MHFE-DG method are slightly more closely spaced at the front of the
solution than in the case of the MHFE-FV method but the difference is small. This indicates
that the MHFE-DG numerical solution is slightly less influenced by the numerical diffusion
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than in the finite volume method. Unlike in pure advection problems (cf. the Buckley and
Leverett problem in Section 4.2.1), the difference between the MHFE-FV and MHFE-DG is
almost negligible in capillarity–dominant problems.

Computational times on a Dual-Core AMD OpteronTM Processor 2216 with 8 GB RAM are
given in Tables 4.8 and 4.9.
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(b) Initial mesh : 1225 triangles

Figure 4.18.: Setup and the coarsest mesh (1225 triangles) for the porous medium with a hetero-
geneity in a two-dimensional space. Properties of the Sands F, G1, and G2 are given in Table B.6.
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Figure 4.19.: DNAPL saturation distribution of the contamination problem of a heterogeneous
sandbox with low permeable lens filled with Sand G1. Results obtained using piecewise constant
(MHFE-FV) approximation of Sw. Time step ∆t is chosen adaptively.
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Figure 4.20.: DNAPL saturation distribution of the contamination problem of a heterogeneous
sandbox with low permeable lens filled with Sand G1. Results obtained using piecewise linear
(MHFE-DG) approximation of Sw. Time step ∆t is chosen adaptively.
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Figure 4.21.: DNAPL saturation distribution of the contamination problem of a heterogeneous
sandbox with low permeable lens filled with Sand G2. Results obtained using piecewise constant
(MHFE-FV) approximation of Sw. Time step ∆t is chosen adaptively.
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Figure 4.22.: DNAPL saturation distribution of the contamination problem of a heterogeneous
sandbox with low permeable lens filled with Sand G2. Results obtained using piecewise linear
(MHFE-DG) approximation of Sw. Time step ∆t is chosen adaptively.
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Figure 4.23.: Contours of the DNAPL saturation Sn of the contamination problem of a hetero-
geneous sandbox with low permeable lens filled with Sand G1. Comparison between the MHFE-
FV (left figures) and the MHFE-DG (right figures) approach. The contour lines spacing is 0.1
starting from Sn = 0.1 (the outer-most one).
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Figure 4.24.: Contours of the DNAPL saturation Sn of the contamination problem of a hetero-
geneous sandbox with low permeable lens filled with Sand G2. Comparison between the MHFE-
FV (left figures) and the MHFE-DG (right figures) approach. The contour lines spacing is 0.1
starting from Sn = 0.1 (the outer-most one).
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Triangles MHFE-FV MHFE-DG

1225 3 min 56 s (236 s) 4 min 24 s (264 s)
2694 16 min 32 s (992 s) 18 min 9 s (1089 s)
4698 43 min 27 s (2607 s) 47 min 30 s (2910 s)
10470 3 h 26 min 45 s (13946 s) 3 h 52 min 26 s (13946 s)
21389 16 h 42 min 31 s (60151 s) 18 h 53 min 53 s (68033 s)
42112 2 d 17 h 19 min 38 s (235178 s) 3 d 1 h 14 min 54 s (263694 s)

Table 4.8.: Computational times on a Dual-Core AMD OpteronTM Processor 2216 with 8 GB
RAM: Low permeable lens filled with Sand G1 in a sandbox (Figures 4.19 and 4.20).

Triangles MHFE-FV MHFE-DG

1225 3 min 14 s (194 s) 3 min 54 s (234 s)
2694 14 min 39 s (879 s) 17 min 26 s (1046 s)
4698 51 min 21 s (3081 s) 54 min 53 s (3293 s)
10470 4 h 18 min 0 s (15480 s) 4 h 53 min 27 s (17607 s)
21389 20 h 27 min 8 s (73628 s) 22 h 41 min 25 s (81685 s)
42112 3 d 7 h 41 min 34 s (286894 s) 3 d 16 h 21 min 53 s (318113 s)

Table 4.9.: Computational times on a Dual-Core AMD OpteronTM Processor 2216 with 8 GB
RAM: Low permeable lens filled with Sand G2 in a sandbox (Figure 4.21 and 4.22).

4.4.2. Highly Heterogeneous Medium

As another example problem, we simulate a laboratory experiment described in [69], [70], [71],
and [57, page 307]. In this experiment, tetrachloroethylene (PCE, see Table B.1) contaminates
a vertically-placed acrylic glass flume which is initially fully water-saturated. The flume is packed
with four different sands (denoted by H, I, J, and K), see Figure 4.25a. The sand properties are
given in Table B.7. On Γ1, a constant DNAPL saturation is prescribed as Sn = 0.6. Boundaries
Γ2, Γ4, and Γ6 are considered impermeable. The hydrostatic water pressure is prescribed on Γ3,
and Γ5. Altogether, the boundary conditions are given as follows

Sw = 0.4 and ψw = 105 Pa on Γ1, (4.100a)

Sw = 1 and ψw = 105 Pa on Γ3 ∪ Γ5, (4.100b)

un ·n = 0 and uw ·n = 0 on Γ2 ∪ Γ4 ∪ Γ6, (4.100c)

where n denotes the outer normal to the domain boundary.

In [70] the experimental results are shown after 34, 126, 184, 220, 245, and 313 seconds. By
using the MHFE-FV and MHFE-DG numerical schemes, our goal is to obtain patterns that
resemble the experimental results at these times. As in the previous sections, we compare the
piecewise constant (D0) and linear (D1) approach and plot the results computed on a series of
four meshes with an increasing number of triangles. The coarsest mesh is shown in Figure 4.25b.

Numerical results in Figure 4.26 (at t = 34 s), 4.27 (at t = 126 s), 4.28 (at t = 184 s), 4.29
(at t = 220 s), 4.30 (at t = 244 s), and 4.31 (at t = 313 s) show a very good agreement with the
experimentally measured saturation distributions in [70] and also the numerical convergence is
apparent when the left-hand-side and right–hand–side subfigures (a,c,e) and (b,d,f), respectively,
are compared to each other for all Figures 4.26–4.31.
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Triangles MHFE-FV MHFE-DG

978 5 min 26 s (326 s) 6 min 44 s (404 s)
1968 14 min 43 s (883 s) 18 min 20 s (1100 s)
4506 45 min 44 s (2744 s) 57 min 23 s (3443 s)
9064 2 h 15 min 34 s (8134 s) 2 h 50 min 8 s (10208 s)

Table 4.10.: Computational times on a Dual-Core AMD OpteronTM Processor 2216 with 8 GB
RAM: Highly heterogeneous medium (at t = 313 s, Figure 4.31).

Computational times on a Dual-Core AMD OpteronTM Processor 2216 with 8 GB RAM are
given in Table 4.10.
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(b) Initial mesh : 978 triangles

Figure 4.25.: Setup and an initial mesh for a highly heterogeneous porous medium in 2D. Properties
of the Sands H, I, J, and K are given in Table B.7.
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Figure 4.26.: MHFE-FV (left) and MHFE-DG (right) DNAPL saturation at t = 34 s for the highly
heterogeneous problem on three structured meshes with 1968 triangles (a,b), 4506 triangles (c,d),
and 9064 triangles (e,f).
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Figure 4.27.: MHFE-FV (left) and MHFE-DG (right) DNAPL saturation at t = 126 s for the highly
heterogeneous problem on three structured meshes with 1968 triangles (a,b), 4506 triangles (c,d),
and 9064 triangles (e,f).
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Figure 4.28.: MHFE-FV (left) and MHFE-DG (right) DNAPL saturation at t = 184 s for the highly
heterogeneous problem on three structured meshes with 1968 triangles (a,b), 4506 triangles (c,d),
and 9064 triangles (e,f).
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Figure 4.29.: MHFE-FV (left) and MHFE-DG (right) DNAPL saturation at t = 220 s for the highly
heterogeneous problem on three structured meshes with 1968 triangles (a,b), 4506 triangles (c,d),
and 9064 triangles (e,f).
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Figure 4.30.: MHFE-FV (left) and MHFE-DG (right) DNAPL saturation at t = 245 s for the highly
heterogeneous problem on three structured meshes with 1968 triangles (a,b), 4506 triangles (c,d),
and 9064 triangles (e,f).
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Figure 4.31.: MHFE-FV (left) and MHFE-DG (right) DNAPL saturation at t = 313 s for the highly
heterogeneous problem on three structured meshes with 1968 triangles (a,b), 4506 triangles (c,d),
and 9064 triangles (e,f).
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4.4.3. Inclined Interface

In the last problem, we investigate behavior of a light non-aqueous phase liquid (LNAPL) at
an inclined material interface using laboratory determined data provided by CESEP, Colorado
School of Mines, Golden, Colorado, [35], [36], [37]. The experimental setup consists of a tank
filled with two different sands L and M whose properties are given in Table B.8 and which is
assumed as two-dimensional in this work. The geometry of a considered domain is shown in
Figure 4.32a, where the LNAPL source of dimensions 1 cm×1 cm is placed in the lower part. We
use a series of three meshes with an increasing number of triangles (844, 5013, and 10791) which
are locally refined around the injection zone (see the coarsest mesh in Figure 4.32b). Initially, the
domain was fully water-saturated and during the whole experiment, a pressure gradient between
the boundaries Γ2 and Γ4 was maintained such that a slow flow of water persisted in the domain
from the right to the left hand side of Figure 4.32). At t = 0 s, the LNAPL (Sudan IV dyed
Soltrol 220, see Table B.1) starts to flow through the source zone with velocity 2.17 · 10−5 ms−1

and the injection lasts for 3.61 hours. After 3.61 hours, the injection is stopped. The boundary
conditions for the MHFE-DG formulation are given as

Sw = 1 and ψw = 105 + 0.015ρwg Pa on Γ2, (4.101a)

Sw = 1 and ψw = 105 Pa on Γ4, (4.101b)

un ·n = 0 and uw ·n = 0 on Γ1 ∪ Γ3, (4.101c)

where n denotes the outer normal to the domain boundary.
We compare the numerical results with the laboratory determined LNAPL distribution in the

porous medium in Figure 4.33 at time t = 3.5 h. Here, the LNAPL still flows into the domain
and starts to accumulate at the inclined interface of the lower permeable sand L. At t = 24 h
in Figure 4.34, the most of the injected LNAPL is trapped at the inclined interface and the
simulated pattern resembles the experimentally determined LNAPL distribution in [37], [83].

The comparison between the MHFE-FV and the MHFE-DG method is shown in Figures 4.35
and 4.36 using contours of the numerical solutions Sn given in Figures 4.33 and 4.34, respectively.
The MHFE-DG numerical solution is slightly less influenced by the numerical diffusion than
the MHFE-FV solution, however, the difference is negligible. The distribution of the LNAPL
saturation agrees to the results computed using the VODA numerical code in [82].

Computational times on a Dual-Core AMD OpteronTM Processor 2216 with 8 GB RAM are
given in Table 4.11.
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(b) Initial mesh : 844 triangles

Figure 4.32.: Setup and an initial mesh for the inclined interface problem. Properties of the Sands
L and M are given in Table B.8, page 127.
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Figure 4.33.: MHFE-FV (left) and MHFE-DG (right) LNAPL saturation at t = 3.5 h for the
inclined interface problem.
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Figure 4.34.: MHFE-FV (left) and MHFE-DG (right) LNAPL saturation at t = 24 h for the
inclined interface problem.
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(c) MHFE-FV, 5013 triangles
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(d) MHFE-DG, 5013 triangles
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(e) MHFE-FV, 10791 triangles
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Figure 4.35.: Contours of LNAPL saturation Sn at t = 3.5 h of the LNAPL contamination problem
with inclined interface. Comparison between the MHFE-FV (left figures) and the MHFE-DG
(right figures) approach. The contour lines spacing is 0.1 starting from Sn = 0.1 (the outer-most
one).

Triangles MHFE-FV MHFE-DG

844 9 min 27 s (567 s) 9 min 35 s (575 s)
5013 2 h 4 min 0 s (7440 s) 2 h 3 min 23 s (7403 s)
10791 17 h 4 min 36 s (61476 s) 17 h 34 min 31 s (63271 s)

Table 4.11.: Computational times on a Dual-Core AMD OpteronTM Processor 2216 with 8 GB
RAM: Highly heterogeneous medium (at t = 24 h, Figure 4.34).
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(b) MHFE-DG, 844 triangles
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(c) MHFE-FV, 5013 triangles
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(d) MHFE-DG, 5013 triangles
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(e) MHFE-FV, 10791 triangles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance x [m]

0

0.1

0.2

0.3

0.4

0.5

D
is
ta
n
ce

y
[m

]

(f) MHFE-DG, 10791 triangles

Figure 4.36.: Contours of LNAPL saturation Sn at t = 24 h of the LNAPL contamination problem
with inclined interface. Comparison between the MHFE-FV (left figures) and the MHFE-DG
(right figures) approach. The contour lines spacing is 0.1 starting from Sn = 0.1 (the outer-most
one).

114



4.5. Concluding Remarks

4.5. Concluding Remarks

In this section, we summarize the key results of the MHFE-DG approach presented in this
chapter. In contrast with [65], the MHFE-DG approach presented here uses a more mathemat-
ically suitable splitting of the total velocity ut described in Section 4.1 which does not produce
unbounded capillary potential gradients when the medium is fully water saturated (cf. the
definitions (4.3b) and (4.4) in the equation (4.15)).

Moreover, we improved the MHFE-DG approach presented in [65] when treating material
discontinuities. In [65] the authors claim that no additional conditions are required at material
interfaces in order to simulate barrier (NAPL pooling) effects. In order to support their state-
ment, they used the van Duijn and de Neef semi-analytical solutions (see Section 2.4, page 30).
However, this semi-analytical solution requires nonzero flux of the non-wetting phase across the
material interface and, therefore, it cannot simulate the barrier effects. We succeeded to include
the extended capillary pressure condition (1.37, page 17) into the formulation of the MHFE-DG
method (and MHFE-FV) which allows for simulating the barrier effect observed in laboratory
experiments. We presented four two-dimensional problems in heterogeneous porous materials
that simulate laboratory experiments described in literature. In these simulations, we show that
the barrier effect is simulated correctly and that the MHFE-DG approach gives more accurate
solution than the MHFE-FV method. The difference between these approaches, in particular,
can be determined on coarse meshes. The MHFE-DG method gives a slightly sharper front
of the NAPL distribution when simulating the NAPL pooling at the inclined interface in the
problem discussed in Section (4.4.3) whilst the amount of work required to compute the MHFE-
DG solution is nearly the same as in the MHFE-FV method, cf. Table 4.11. Unlike in pure
advection problems such as the Buckley and Leverett problem in Section 4.2.1, the difference
between the MHFE-FV and the MHFE-DG is almost negligible when the flow is mainly driven
by the capillarity.
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CONCLUSIONS

I
n this thesis, we dealt with several problems related to mathematical modelling of flow of two
incompressible and immiscible phases in porous media. A topic that appears recurrently
in many parts is the behavior of a non-wetting phase at sharp material discontinuities.

We reviewed the available theory of multiphase flow in the porous media including approaches
to model capillarity on the pore–scale and macro–scale levels, respectively. We presented an-
alytical and semi-analytical solutions that can be obtained under special conditions for both
homogeneous and heterogeneous porous medium. Among these solutions, we developed the
semi-analytical solution for a porous medium with a single discontinuity. Furthermore, we in-
vestigated significance of the dynamic effect in the capillary pressure–saturation relationship in
the two-phase flow in layered porous materials, especially its influence on the capillary barrier
effect phenomenon. Finally, we derived a higher-order numerical method for simulating two-
phase flow through homogeneous and heterogeneous porous media that is capable of simulating
NAPL pooling at material interfaces (the barrier effect) in one and two dimensional domains.

In Chapter 2, we summarized available closed-form solutions, where we revealed a new possi-
bility of obtaining semi-analytical solutions for a porous medium consisting of two soils separated
by a sharp interface. This result is based on the approach presented in [45], [46], and [98] that
dealt with the advection–diffusion problem in a homogeneous medium. Treatment of interfaces
in a heterogeneous medium follows the formulation in [28], [98] and [99] was limited to the
diffusion case only. Our approach allows consideration of diffusion together with advection.
There are many situations in two-phase flow where both advection and diffusion terms have to
be considered. The solution is obtained by an iterative procedure adjusting the flows in both
homogeneous subdomains to reach the required condition at the interface. This solution serves
as a benchmark solution to verify convergence of numerical schemes.

In Chapter 3, we investigate implications of the dynamic effect in the capillary pressure–
saturation relationship on flow in heterogeneous porous medium. Dynamic effects have been
observed in laboratory experiments in homogeneous porous material held in CESEP, Colorado
School of Mines, and in other laboratories as well, however, none of these experiments involved
discontinuities in the porous materials. Therefore, we have developed a numerical model based on
the vertex-centered finite volume method (VCFVM) capable of simulating flow of two immiscible
and incompressible phases in heterogeneous porous materials under dynamic conditions. The
numerical scheme is verified and its order of convergence is estimated using the semi-analytical
solutions for homogeneous and heterogeneous porous medium, respectively. The results show
that the use of various functional models (e.g., constant, linear, or exponential) of the dynamic
effect coefficient τ = τ(Sw) may substantially influence the propagation speed of the front as
well as the accumulation time of the non-wetting phase at material interfaces. Laboratory
measured parameters were used in the numerical simulation to show that the dynamic effect
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has a significant impact on the magnitude of the capillary pressure while the change in the
saturation profiles may be considered negligible in some cases. The constant model of τ showed
rather unrealistic profile of the numerical approximation of the capillary pressure when compared
to the laboratory measured data. Results of the simulation indicate that the dynamic effect may
not be so important in drainage problems in a homogeneous porous medium, but, it may be
important in heterogeneous media where the capillarity governs flow across material interfaces.
The linear model of τ accelerates flow of air across the interface for both configurations of the
coarse and fine porous media, when the ratio between entry pressures of the media is close to
1. In all other cases, the use of the dynamic effect seems to increase the time needed for the
non-wetting fluid to accumulate at a finer sand interface (delay due to barrier effect). This
suggests that without dynamic effects, the travel time of the non-wetting phase can be possibly
estimated to be smaller or larger than the actual time. The conclusion can be settled by
laboratory experiment only.

In the final part of the dissertation thesis, we used the mixed-hybrid finite element (MHFE)
method together with the discontinuous Galerkin (DG) approach to develop a higher–order
numerical scheme capable of simulating flow of two immiscible and incompressible fluids in
heterogeneous porous materials in one- and two-dimensional domains. As in the case of VCFVM,
we used the benchmark solutions to investigate its convergence towards the exact solution.
In case of the pure hyperbolic benchmark problem in 1D, we show that the MHFE-FV and
MHFE-DG approach involves substantially less numerical diffusion than the VCFVM. In case
of heterogeneous porous materials, we used example problems from literature to show that
the behavior of the non-wetting phase at material discontinuities is treated correctly and that
the numerical scheme is capable of simulating the barrier effect. Therefore, we extended the
approach described in [65] so that the barrier effect can be simulated. In two dimensions, we used
the MHFE-DG method to simulate two benchmark problems described in literature and showed
a good agreement with the published numerical and experimental results. Finally, we simulated
a laboratory experiment involving light non-aqueous phase liquid (LNAPL) in a layered porous
medium with an inclined material interface. A good match between the numerical and laboratory
determined results was observed. Altogether, we showed that the MHFE-DG method gives more
accurate results than the MHFE-FV method in case of advection–dominated flow. However,
both MHFE-FV and MHFE-DG methods give similar results in all capillarity–driven problems
that were considered in this thesis. This indicates that the use of the considered higher–order
discontinuous Galerkin approach together with the mixed–hybrid finite element (MHFE-DG)
method instead of the finite volume method (MHFE-FV) does not improve significantly the
accuracy of the numerical approximation when the capillarity dominates.
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APPENDIX A

PIECEWISE LINEAR BASIS FUNCTIONS

In this section we describe the piecewise linear basis functions of D1(Kh) used in Chapter 4.

A.1. Piecewise Linear Basis Functions in 1D

In R1, the explicit formulae for the basis functions ϕK,E for all x ∈ K = [VA, VB] are given as

ϕK,VA =
VB − x
VB − VA

, (A.1a)

ϕK,VB =
x− VA
VB − VA

, (A.1b)

where VA, VB ∈ EK = VK , VA < VB. Therefore, the coefficient Sw,K,E in (4.68) represents the
value of the wetting phase saturation at VE ∈ EK = VK with respect to K. Together with the
explicit formulae (4.11) for the basis functions of RT0(K), the coefficients (4.71a) are given for
all E,F ∈ {A,B} as

BK,VE ,VF =
1

6
(1 + δEF )(VB − VA) (A.2)

and the inverse matrix bK = B−1
K can be easily expressed as

bK,VE ,VF =
2

VB − VA
(3δEF − 1). (A.3)

Finally, the coefficient IK,H,E,F defined by (4.78) yields

IK,H,E,F = δEHδFH . (A.4)

A.2. Piecewise Linear Basis Functions in 2D

In R2, we use the same notation as in (4.13), i.e., VE ∈ VK always denotes the opposite vertex
to side E ∈ EK . The basis functions ϕK,E read as

ϕK,E = CE,0 + CE,1 dxe1 + CE,2 dxe2 , (A.5)

where the coefficients {CE,k}k=0,1,2, are for all E ∈ EK given by the following system of linear
equations to satisfy (4.69):

ϕK,E(VE) = CE,0 + CE,1 dVEe1 + CE,2 dVEe2 = −1, (A.6a)

ϕK,E(VF ) = CE,0 + CE,1 dVGe1 + CE,2 dVF e2 = 1, (A.6b)

ϕK,E(VG) = CE,0 + CE,1 dVF e1 + CE,2 dVGe2 = 1, (A.6c)
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A. Piecewise Linear Basis Functions

where VK = {VE ,VF ,VG} and EK = {E,F,G}. The coefficient Sw,K,E in (4.68) represents the
average value of the wetting phase saturation over E ∈ EK with respect to K and it can be also
interpreted as the value of Sw in the midpoint of E.

Combining (A.5) and the explicit formulae (4.13) for the basis functions of RT0(K), we obtain
the coefficients (4.71a) for all E,F,G ∈ EK in the form

BK,E,F =
1

3
δEF |K|2 (A.7)

and the inverse matrix bK = B−1
K reads as

bK,E,F =
3

|K|2
δEF . (A.8)

Finally, the integration of the coefficient IK,H,E,F defined by (4.78) reveals that

IK,H,E,F = δEHδFH +
1

3
(1− δEH)(1− δFH)(2δEF − 1). (A.9)
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APPENDIX B

FLUID AND MATERIAL PROPERTIES

B.1. Fluids

Property
Density (at 20◦C)
ρ [kg m−3]

Dynamic viscosity
µ [kg m−1 s−1]

Water1 997.78 9.772 · 10−4

Air1 1.20470 1.8205 · 10−5

NAPL A2 1400 1 · 10−3

Sudan IV dyed Soltrol 2201 836 3.6 · 10−3

Tetrachlorethylene PCE1 1623 8.9 · 10−4

Trichlorethylene TCE1 1460 9 · 10−4

1 Provided by CESEP, Colorado School of Mines, Colorado.
2 Taken over from [57].

Table B.1.: Fluid properties used in this thesis.
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B. Fluid and Material Properties

B.2. Sand A

Property Sand A

CESEP label Ohji sand
(field sand)

Cycle drainage

Porosity Φ [−] 0.448

Intrinsic permeability K [m2] 1.631 · 10−11

Residual saturation Swr [−] 0.265

Brooks and Corey param. λ [−] 4.660

Brooks and Corey param. pd [Pa] 3450.18

van Genuchten parameter n [−] n/a

van Genuchten parameter α [Pa−1] n/a

Stauffer model τ τS [kg m−1 s−1] τS,A = 3.3 · 105

Constant model τ τconst [kg m−1 s−1] τconst,A(Sw) = 1.1 · 106

Linear model τ τlin [kg m−1 s−1] τlin,A(Sw) = 2 · 106(1− Sw)

Exponential model τ τexp [kg m−1 s−1] τexp,A(Sw) = 108 exp(−7.7Sw)

Table B.2.: Properties of a field sand from Ohji site, Tokyo, denoted as Sand A. Samples provided
by CESEP, Colorado School of Mines, Colorado.
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B.3. Sand B

B.3. Sand B

Property Sand B

CESEP label Sand #70
(silica sand)

Cycle drainage wetting

Porosity Φ [−] 0.418

Intrinsic permeability K [m2] 1.437 · 10−11

Residual saturation Swr [−] 0.037

Brooks and Corey param. λ [−] 5.323 2.793

Brooks and Corey param. pd [Pa] 4041.72 2501.55

van Genuchten parameter n [−] 11.53 5.28

van Genuchten parameter α [Pa−1] 2.14 · 10−4 3.24 · 10−4

Stauffer model τ τS [kg m−1 s−1] τS,B = 4.85 · 105

Constant model τ τconst [kg m−1 s−1] τconst,B =
τS,B
τS,A

τconst,A

Linear model τ τlin [kg m−1 s−1] τlin,B =
τS,B
τS,A

τlin,A

Exponential model τ τexp [kg m−1 s−1] τexp,B =
τS,B
τS,A

τexp,A

Table B.3.: Properties of a silica sand #70 denoted as Sand B. Samples provided by CESEP,
Colorado School of Mines, Colorado.
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B. Fluid and Material Properties

B.4. Sand C

Property Sand C

CESEP label Sand #110
(silica sand)

Cycle drainage wetting

Porosity Φ [−] 0.343

Intrinsic permeability K [m2] 5.168 · 10−12

Residual saturation Swr [−] 0.040

Brooks and Corey param. λ [−] 5.408 2.857

Brooks and Corey param. pd [Pa] 8027.52 4605.80

van Genuchten parameter n [−] 12.49 6.64

van Genuchten parameter α [Pa−1] 1.08 · 10−4 1.71 · 10−4

Stauffer model τ τS [kg m−1 s−1] τS,C = 4.25 · 106

Constant model τ τconst [kg m−1 s−1] τconst,C =
τS,C
τS,A

τconst,A

Linear model τ τlin [kg m−1 s−1] τlin,C =
τS,C
τS,A

τlin,A

Exponential model τ τexp [kg m−1 s−1] τexp,C =
τS,C
τS,A

τexp,A

Table B.4.: Properties of a silica sand #110 denoted as Sand C. Samples provided by CESEP,
Colorado School of Mines, Colorado.
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B.5. Sands D and E

B.5. Sands D and E

Property Sand D Sand E

Original label in [57, page 277] Sand I Sand II

Porosity Φ [−] 0.40 0.39

Intrinsic permeability K [m2] 5.04 · 10−10 5.26 · 10−11

Residual saturation Swr [−] 0.08 0.10

Pore size distribution index λ [−] 3.86 2.49

Entry pressure pd [Pa] 370 1324

Table B.5.: Properties of the sands used in Benchmark Problem VI taken over from [57, page 277].

B.6. Sands F and G

Property Sand F Sand G1 Sand G2

Original label in [57] ( [3]) Sand 1 (matrix) Sand 2 (lens)

Porosity Φ [−] 0.40 0.39

Intrinsic permeability K [m2] 6.64 · 10−11 3.32 · 10−12

Residual saturation Swr [−] 0.10 0.12

Pore size distribution index λ [−] 2.7 2.0

Entry pressure pd [Pa] 755 1163.5 1466.1

Table B.6.: Properties of the sands used in numerical simulations in Section 4.4.1, taken over
from [57, page 300] and [3, page 26].
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B. Fluid and Material Properties

B.7. Sands H, I, J, and K

Property Sand H Sand I

Original label in [57] Sand 1 Sand 2

Porosity Φ [−] 0.40 0.39

Intrinsic permeability K [m2] 5.041 · 10−10 2.051 · 10−10

Residual saturation Swr [−] 0.078 0.069

Pore size distribution index λ [−] 3.86 3.51

Entry pressure pd [Pa] 369.73 434.45

Property Sand J Sand K

Original label in [57] Sand 3 Sand 4

Porosity Φ [−] 0.39 0.41

Intrinsic permeability K [m2] 5.621 · 10−11 8.191 · 10−12

Residual saturation Swr [−] 0.098 0.189

Pore size distribution index λ [−] 2.49 3.30

Entry pressure pd [Pa] 1323.95 3246.15

Table B.7.: Properties of the sands used in numerical simulations in Section 4.4.2, taken over
from [57, page 308].
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B.8. Sand L and M

B.8. Sand L and M

Property Sand L Sand M

CESEP label Sand #70 Sand #30
(silica sand) (silica sand)

Cycle drainage drainage

Porosity Φ [−] 0.444 0.443

Intrinsic permeability K [m2] 2.18 · 10−11 1.75 · 10−10

Residual saturation Swr [−] 0.088 0.073

Residual saturation Snr [−] 0.117 0.17

Brooks and Corey param. λ [−] 5.32 3.78

Brooks and Corey param. pd [Pa] 4042 1633

Table B.8.: Properties of the silica sands #30 and #70 denoted as Sand L and Sand M, respectively,
and used in numerical simulations in Section 4.4.3. Samples provided by CESEP, Colorado School
of Mines, Colorado.
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